具有聚集诱导发射的自组装纳米偶联物用于近红外成像和胞吞驱动的癌症治疗。

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Guiping Yuan,Wutong Du,Feiyi Sun,Qiuyang Dong,Cheng Liu,Yingni Xu,Chunxi Liu,Jacky W Y Lam,Jianwei Sun,Jiajia Xiang,Ryan T K Kwok,Ben Zhong Tang
{"title":"具有聚集诱导发射的自组装纳米偶联物用于近红外成像和胞吞驱动的癌症治疗。","authors":"Guiping Yuan,Wutong Du,Feiyi Sun,Qiuyang Dong,Cheng Liu,Yingni Xu,Chunxi Liu,Jacky W Y Lam,Jianwei Sun,Jiajia Xiang,Ryan T K Kwok,Ben Zhong Tang","doi":"10.1002/anie.202506770","DOIUrl":null,"url":null,"abstract":"Nanomedicine holds immense potential to revolutionize cancer therapy, yet its clinical translation remains hampered by insufficient tumor accumulation and an inability to dynamically monitor therapeutic penetration. While transcytosis-mediated transport offers a promising strategy to overcome biological barriers, existing carriers lack real-time imaging capabilities, particularly in the near-infrared II window, to guide optimization. Herein, we address this dual challenge through a multifunctional poly[L-γ-[2-(N-oxide-N,N-dimethylamino)ethyl]glutamine]-paclitaxel (OPGAX) conjugate integrated with aggregation-induced emission (AIE) luminogens. The OPGAX conjugate self-assembled into uniform nanoparticles (NPs) with a high drug-loading capacity (42.5%) and intense near-Infrared II (NIR-II) fluorescence (1000-1350 nm). The zwitterionic tertiary amine oxide (TAO) moiety endowed OPGAX with protein resistance and cell membrane affinity, leading to prolonged blood circulation and enhanced tumor accumulation. OPGAX NPs performed NIR-II imaging to visualize whole-body vasculature and dynamically track tumor penetration. In 4T1 tumor-bearing mice, OPGAX NPs achieved deep tumor infiltration via transcytosis, visualized dynamically by NIR-II imaging, and suppressed tumor growth. This platform bridges diagnostic certainty with therapeutic efficacy, offering a translatable strategy for image-guided precision oncology.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"15 1","pages":"e202506770"},"PeriodicalIF":16.9000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Assembled Nanoconjugates with Aggregation-Induced Emission for Near-Infrared II Imaging and Transcytosis-Driven Cancer Therapy.\",\"authors\":\"Guiping Yuan,Wutong Du,Feiyi Sun,Qiuyang Dong,Cheng Liu,Yingni Xu,Chunxi Liu,Jacky W Y Lam,Jianwei Sun,Jiajia Xiang,Ryan T K Kwok,Ben Zhong Tang\",\"doi\":\"10.1002/anie.202506770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanomedicine holds immense potential to revolutionize cancer therapy, yet its clinical translation remains hampered by insufficient tumor accumulation and an inability to dynamically monitor therapeutic penetration. While transcytosis-mediated transport offers a promising strategy to overcome biological barriers, existing carriers lack real-time imaging capabilities, particularly in the near-infrared II window, to guide optimization. Herein, we address this dual challenge through a multifunctional poly[L-γ-[2-(N-oxide-N,N-dimethylamino)ethyl]glutamine]-paclitaxel (OPGAX) conjugate integrated with aggregation-induced emission (AIE) luminogens. The OPGAX conjugate self-assembled into uniform nanoparticles (NPs) with a high drug-loading capacity (42.5%) and intense near-Infrared II (NIR-II) fluorescence (1000-1350 nm). The zwitterionic tertiary amine oxide (TAO) moiety endowed OPGAX with protein resistance and cell membrane affinity, leading to prolonged blood circulation and enhanced tumor accumulation. OPGAX NPs performed NIR-II imaging to visualize whole-body vasculature and dynamically track tumor penetration. In 4T1 tumor-bearing mice, OPGAX NPs achieved deep tumor infiltration via transcytosis, visualized dynamically by NIR-II imaging, and suppressed tumor growth. This platform bridges diagnostic certainty with therapeutic efficacy, offering a translatable strategy for image-guided precision oncology.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"15 1\",\"pages\":\"e202506770\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202506770\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202506770","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

纳米医学具有革新癌症治疗的巨大潜力,但其临床转化仍然受到肿瘤积累不足和无法动态监测治疗渗透的阻碍。虽然胞核分裂介导的转运为克服生物障碍提供了一种很有前途的策略,但现有的载体缺乏实时成像能力,特别是在近红外II窗口,无法指导优化。在这里,我们通过一个多功能聚[L-γ-[2-(n-氧化物- n, n-二甲氨基)乙基]谷氨酰胺]-紫杉醇(OPGAX)偶联物与聚集诱导发射(AIE)发光物质集成来解决这一双重挑战。OPGAX偶联物自组装成均匀的纳米颗粒(NPs),具有高载药量(42.5%)和强近红外II (NIR-II)荧光(1000-1350 nm)。两性离子氧化叔胺(TAO)片段赋予OPGAX蛋白抗性和细胞膜亲和力,导致血液循环延长和肿瘤蓄积增强。OPGAX NPs进行NIR-II成像以显示全身血管系统并动态跟踪肿瘤渗透。在4T1荷瘤小鼠中,OPGAX NPs通过胞吞作用实现肿瘤深部浸润,通过NIR-II成像动态显示,抑制肿瘤生长。该平台将诊断确定性与治疗效果联系起来,为图像引导的精确肿瘤学提供了可翻译的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-Assembled Nanoconjugates with Aggregation-Induced Emission for Near-Infrared II Imaging and Transcytosis-Driven Cancer Therapy.
Nanomedicine holds immense potential to revolutionize cancer therapy, yet its clinical translation remains hampered by insufficient tumor accumulation and an inability to dynamically monitor therapeutic penetration. While transcytosis-mediated transport offers a promising strategy to overcome biological barriers, existing carriers lack real-time imaging capabilities, particularly in the near-infrared II window, to guide optimization. Herein, we address this dual challenge through a multifunctional poly[L-γ-[2-(N-oxide-N,N-dimethylamino)ethyl]glutamine]-paclitaxel (OPGAX) conjugate integrated with aggregation-induced emission (AIE) luminogens. The OPGAX conjugate self-assembled into uniform nanoparticles (NPs) with a high drug-loading capacity (42.5%) and intense near-Infrared II (NIR-II) fluorescence (1000-1350 nm). The zwitterionic tertiary amine oxide (TAO) moiety endowed OPGAX with protein resistance and cell membrane affinity, leading to prolonged blood circulation and enhanced tumor accumulation. OPGAX NPs performed NIR-II imaging to visualize whole-body vasculature and dynamically track tumor penetration. In 4T1 tumor-bearing mice, OPGAX NPs achieved deep tumor infiltration via transcytosis, visualized dynamically by NIR-II imaging, and suppressed tumor growth. This platform bridges diagnostic certainty with therapeutic efficacy, offering a translatable strategy for image-guided precision oncology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信