“对称破缺”-自组装寡硫吩中不同的分子填充导致发射陷阱态和增强光催化太阳能H2生产。

IF 4.6 2区 化学 Q2 CHEMISTRY, PHYSICAL
Soham Ghosh, , , Amit Kumar, , , Subhajit Kar, , , Pandiselvi Durairaj, , , Sushila Kumari, , , Sunandan Sarkar*, , , Arijit K. De*, , and , Santanu Bhattacharyya*, 
{"title":"“对称破缺”-自组装寡硫吩中不同的分子填充导致发射陷阱态和增强光催化太阳能H2生产。","authors":"Soham Ghosh,&nbsp;, ,&nbsp;Amit Kumar,&nbsp;, ,&nbsp;Subhajit Kar,&nbsp;, ,&nbsp;Pandiselvi Durairaj,&nbsp;, ,&nbsp;Sushila Kumari,&nbsp;, ,&nbsp;Sunandan Sarkar*,&nbsp;, ,&nbsp;Arijit K. De*,&nbsp;, and ,&nbsp;Santanu Bhattacharyya*,&nbsp;","doi":"10.1021/acs.jpclett.5c01824","DOIUrl":null,"url":null,"abstract":"<p >Two different types of self-assemblies have been fabricated from 2,2′-bithiophene-5,5′-dicarboxaldehyde (BTDA) and 2,2′:5′,2′′-terthiophene-5,5′′-dicarboxaldehyde (TTDA) molecules through reprecipitation methods. Unlike the BTDA molecule, one thiophene unit remains out of plane with respect to the other two thiophene units in TTDA. This results in partial face-to-face intermolecular interactions during self-assembly, causing the formation of a defect-mediated emissive trap state at longer wavelengths. These trap states are charge-transfer types with a longer lifetime compared to the pure TTDA molecule. Detailed computational studies and femtosecond transient absorption spectroscopy support the findings. The appearance of the charge transfer type trap state in TTDA self-assembly facilitates the photoinduced charge separation and free carrier accumulation, which helps to boost the photocatalytic solar H<sub>2</sub> production. However, highly defined head-to-tail molecular arrangements in BTDA self-assembly hinder the formation of such an emissive trap state, resulting in a decrease in the photocatalytic efficiency.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"16 38","pages":"9906–9916"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"“Symmetry Breaking”-Assisted Distinct Molecular Packing in Self-Assembled Oligothiophenes Leading to Emissive Trap States and Enhanced Photocatalytic Solar H2 Production\",\"authors\":\"Soham Ghosh,&nbsp;, ,&nbsp;Amit Kumar,&nbsp;, ,&nbsp;Subhajit Kar,&nbsp;, ,&nbsp;Pandiselvi Durairaj,&nbsp;, ,&nbsp;Sushila Kumari,&nbsp;, ,&nbsp;Sunandan Sarkar*,&nbsp;, ,&nbsp;Arijit K. De*,&nbsp;, and ,&nbsp;Santanu Bhattacharyya*,&nbsp;\",\"doi\":\"10.1021/acs.jpclett.5c01824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Two different types of self-assemblies have been fabricated from 2,2′-bithiophene-5,5′-dicarboxaldehyde (BTDA) and 2,2′:5′,2′′-terthiophene-5,5′′-dicarboxaldehyde (TTDA) molecules through reprecipitation methods. Unlike the BTDA molecule, one thiophene unit remains out of plane with respect to the other two thiophene units in TTDA. This results in partial face-to-face intermolecular interactions during self-assembly, causing the formation of a defect-mediated emissive trap state at longer wavelengths. These trap states are charge-transfer types with a longer lifetime compared to the pure TTDA molecule. Detailed computational studies and femtosecond transient absorption spectroscopy support the findings. The appearance of the charge transfer type trap state in TTDA self-assembly facilitates the photoinduced charge separation and free carrier accumulation, which helps to boost the photocatalytic solar H<sub>2</sub> production. However, highly defined head-to-tail molecular arrangements in BTDA self-assembly hinder the formation of such an emissive trap state, resulting in a decrease in the photocatalytic efficiency.</p>\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"16 38\",\"pages\":\"9906–9916\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c01824\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c01824","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

以2,2′-噻吩-5,5′-二甲醛(BTDA)和2,2′:5′,2′-噻吩-5,5′-二甲醛(TTDA)分子为原料,通过重沉淀法制备了两种不同类型的自组装体。与BTDA分子不同,一个噻吩单元相对于TTDA中的其他两个噻吩单元保持平面外。这导致在自组装过程中部分面对面的分子间相互作用,导致在较长波长的缺陷介导的发射阱态的形成。与纯TTDA分子相比,这些陷阱态是具有更长的寿命的电荷转移类型。详细的计算研究和飞秒瞬态吸收光谱支持这一发现。TTDA自组装中电荷转移型阱态的出现有利于光诱导电荷分离和自由载流子的积累,有利于光催化太阳能制氢。然而,BTDA自组装中高度明确的头尾分子排列阻碍了这种发射阱态的形成,导致光催化效率下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

“Symmetry Breaking”-Assisted Distinct Molecular Packing in Self-Assembled Oligothiophenes Leading to Emissive Trap States and Enhanced Photocatalytic Solar H2 Production

“Symmetry Breaking”-Assisted Distinct Molecular Packing in Self-Assembled Oligothiophenes Leading to Emissive Trap States and Enhanced Photocatalytic Solar H2 Production

Two different types of self-assemblies have been fabricated from 2,2′-bithiophene-5,5′-dicarboxaldehyde (BTDA) and 2,2′:5′,2′′-terthiophene-5,5′′-dicarboxaldehyde (TTDA) molecules through reprecipitation methods. Unlike the BTDA molecule, one thiophene unit remains out of plane with respect to the other two thiophene units in TTDA. This results in partial face-to-face intermolecular interactions during self-assembly, causing the formation of a defect-mediated emissive trap state at longer wavelengths. These trap states are charge-transfer types with a longer lifetime compared to the pure TTDA molecule. Detailed computational studies and femtosecond transient absorption spectroscopy support the findings. The appearance of the charge transfer type trap state in TTDA self-assembly facilitates the photoinduced charge separation and free carrier accumulation, which helps to boost the photocatalytic solar H2 production. However, highly defined head-to-tail molecular arrangements in BTDA self-assembly hinder the formation of such an emissive trap state, resulting in a decrease in the photocatalytic efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信