通过上转换纳米平台激活NIR-II光控光合作用,靶向生物能量治疗急性肾损伤。

IF 6.8 1区 医学 Q1 CHEMISTRY, MEDICINAL
Xiaojuan Hu, , , Xingwen Cheng, , , Liqiang Shao, , , Lan Yang, , , Gongning Chen, , , Zhangwei Yan, , , Mengdie Yu, , , Yehui Kang, , , Xiaozhou Mou*, , , Xianghong Yang*, , and , Yu Cai*, 
{"title":"通过上转换纳米平台激活NIR-II光控光合作用,靶向生物能量治疗急性肾损伤。","authors":"Xiaojuan Hu,&nbsp;, ,&nbsp;Xingwen Cheng,&nbsp;, ,&nbsp;Liqiang Shao,&nbsp;, ,&nbsp;Lan Yang,&nbsp;, ,&nbsp;Gongning Chen,&nbsp;, ,&nbsp;Zhangwei Yan,&nbsp;, ,&nbsp;Mengdie Yu,&nbsp;, ,&nbsp;Yehui Kang,&nbsp;, ,&nbsp;Xiaozhou Mou*,&nbsp;, ,&nbsp;Xianghong Yang*,&nbsp;, and ,&nbsp;Yu Cai*,&nbsp;","doi":"10.1021/acs.jmedchem.5c02109","DOIUrl":null,"url":null,"abstract":"<p >Acute kidney injury (AKI) causes renal tubular damage, driven primarily by mitochondrial dysfunction and reactive oxygen species (ROS)-mediated oxidative stress, leading to a cellular energy crisis. The physiological architecture of the kidney hampers targeted drug delivery, rendering metabolic restoration a therapeutic challenge. To address this, we developed a second near-infrared (NIR-II) light-driven, bioenergetic nanoplatform (UCTR) that leverages upconversion nanoparticle (UCNPs)-enhanced photosynthesis for energy replenishment and mitochondrial repair in AKI. The UCTR consists of thylakoid membrane (TM)-encapsulated UCNPs cloaked with activated renal tubular epithelial cell membranes (RECM), enabling targeted accumulation in injured tubules. The UCNPs convert deep-tissue-penetrating NIR-II light into visible wavelengths, activating photosynthetic adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH) synthesis within the TM component under irradiation. This exogenous bioenergetic supply mitigates hypoxia-induced mitochondrial energy deficits, while the AMPK/PGC-1α pathway is simultaneously activated to restore the mitochondrial membrane potential. Moreover, UCTR synergizes the antioxidative and anti-inflammatory effects of plantain, accelerating tubular repair.</p>","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"68 18","pages":"19746–19766"},"PeriodicalIF":6.8000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NIR-II Light-Controlled Photosynthetic Activation via an Upconversion Nanoplatform for Targeted Bioenergetic Therapy in Acute Kidney Injury\",\"authors\":\"Xiaojuan Hu,&nbsp;, ,&nbsp;Xingwen Cheng,&nbsp;, ,&nbsp;Liqiang Shao,&nbsp;, ,&nbsp;Lan Yang,&nbsp;, ,&nbsp;Gongning Chen,&nbsp;, ,&nbsp;Zhangwei Yan,&nbsp;, ,&nbsp;Mengdie Yu,&nbsp;, ,&nbsp;Yehui Kang,&nbsp;, ,&nbsp;Xiaozhou Mou*,&nbsp;, ,&nbsp;Xianghong Yang*,&nbsp;, and ,&nbsp;Yu Cai*,&nbsp;\",\"doi\":\"10.1021/acs.jmedchem.5c02109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Acute kidney injury (AKI) causes renal tubular damage, driven primarily by mitochondrial dysfunction and reactive oxygen species (ROS)-mediated oxidative stress, leading to a cellular energy crisis. The physiological architecture of the kidney hampers targeted drug delivery, rendering metabolic restoration a therapeutic challenge. To address this, we developed a second near-infrared (NIR-II) light-driven, bioenergetic nanoplatform (UCTR) that leverages upconversion nanoparticle (UCNPs)-enhanced photosynthesis for energy replenishment and mitochondrial repair in AKI. The UCTR consists of thylakoid membrane (TM)-encapsulated UCNPs cloaked with activated renal tubular epithelial cell membranes (RECM), enabling targeted accumulation in injured tubules. The UCNPs convert deep-tissue-penetrating NIR-II light into visible wavelengths, activating photosynthetic adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH) synthesis within the TM component under irradiation. This exogenous bioenergetic supply mitigates hypoxia-induced mitochondrial energy deficits, while the AMPK/PGC-1α pathway is simultaneously activated to restore the mitochondrial membrane potential. Moreover, UCTR synergizes the antioxidative and anti-inflammatory effects of plantain, accelerating tubular repair.</p>\",\"PeriodicalId\":46,\"journal\":{\"name\":\"Journal of Medicinal Chemistry\",\"volume\":\"68 18\",\"pages\":\"19746–19766\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jmedchem.5c02109\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jmedchem.5c02109","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

急性肾损伤(Acute kidney injury, AKI)主要由线粒体功能障碍和活性氧(reactive oxygen species, ROS)介导的氧化应激引起肾小管损伤,导致细胞能量危机。肾脏的生理结构阻碍了靶向药物的递送,使代谢恢复成为治疗的挑战。为了解决这个问题,我们开发了第二种近红外(NIR-II)光驱动的生物能量纳米平台(UCTR),该平台利用上转换纳米颗粒(UCNPs)增强的光合作用来补充AKI的能量和线粒体修复。UCTR由类囊体膜(TM)包裹的UCNPs组成,UCNPs被激活的肾小管上皮细胞膜(RECM)包裹,能够在受损的小管中靶向积累。UCNPs将穿透深层组织的NIR-II光转化为可见波长,在照射下激活TM成分内的光合三磷酸腺苷(ATP)和烟酰胺腺嘌呤二核苷酸磷酸(NADPH)合成。这种外源性生物能量供应减轻了缺氧诱导的线粒体能量缺陷,同时激活AMPK/PGC-1α途径以恢复线粒体膜电位。此外,UCTR协同大车前草的抗氧化和抗炎作用,加速小管修复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

NIR-II Light-Controlled Photosynthetic Activation via an Upconversion Nanoplatform for Targeted Bioenergetic Therapy in Acute Kidney Injury

NIR-II Light-Controlled Photosynthetic Activation via an Upconversion Nanoplatform for Targeted Bioenergetic Therapy in Acute Kidney Injury

Acute kidney injury (AKI) causes renal tubular damage, driven primarily by mitochondrial dysfunction and reactive oxygen species (ROS)-mediated oxidative stress, leading to a cellular energy crisis. The physiological architecture of the kidney hampers targeted drug delivery, rendering metabolic restoration a therapeutic challenge. To address this, we developed a second near-infrared (NIR-II) light-driven, bioenergetic nanoplatform (UCTR) that leverages upconversion nanoparticle (UCNPs)-enhanced photosynthesis for energy replenishment and mitochondrial repair in AKI. The UCTR consists of thylakoid membrane (TM)-encapsulated UCNPs cloaked with activated renal tubular epithelial cell membranes (RECM), enabling targeted accumulation in injured tubules. The UCNPs convert deep-tissue-penetrating NIR-II light into visible wavelengths, activating photosynthetic adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH) synthesis within the TM component under irradiation. This exogenous bioenergetic supply mitigates hypoxia-induced mitochondrial energy deficits, while the AMPK/PGC-1α pathway is simultaneously activated to restore the mitochondrial membrane potential. Moreover, UCTR synergizes the antioxidative and anti-inflammatory effects of plantain, accelerating tubular repair.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Medicinal Chemistry
Journal of Medicinal Chemistry 医学-医药化学
CiteScore
4.00
自引率
11.00%
发文量
804
审稿时长
1.9 months
期刊介绍: The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents. The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信