高分子陶瓷前驱体的光化学和热化学。

IF 4.6 2区 化学 Q2 CHEMISTRY, PHYSICAL
Nabankur Dasgupta, , , Kai Ito, , , Thomas M. Linker, , , Wataru Sugimoto, , , Seyedmahmoud Mortazavi, , , Rajiv K. Kalia, , , Aiichiro Nakano*, , , Alexander T. Radosevich, , , Kohei Shimamura, , , Fuyuki Shimojo, , , Adri van Duin, , and , Priya Vashishta, 
{"title":"高分子陶瓷前驱体的光化学和热化学。","authors":"Nabankur Dasgupta,&nbsp;, ,&nbsp;Kai Ito,&nbsp;, ,&nbsp;Thomas M. Linker,&nbsp;, ,&nbsp;Wataru Sugimoto,&nbsp;, ,&nbsp;Seyedmahmoud Mortazavi,&nbsp;, ,&nbsp;Rajiv K. Kalia,&nbsp;, ,&nbsp;Aiichiro Nakano*,&nbsp;, ,&nbsp;Alexander T. Radosevich,&nbsp;, ,&nbsp;Kohei Shimamura,&nbsp;, ,&nbsp;Fuyuki Shimojo,&nbsp;, ,&nbsp;Adri van Duin,&nbsp;, and ,&nbsp;Priya Vashishta,&nbsp;","doi":"10.1021/acs.jpclett.5c02429","DOIUrl":null,"url":null,"abstract":"<p >While pyrolysis of polymeric precursors has gained attention for the additive manufacturing of ceramics, the high-temperature process is energy-inefficient and time-consuming. Recently, photochemistry has been suggested to reduce energy consumption and reaction time, but the microscopic mechanisms of such accelerated reactions remain elusive. Here, we reveal distinct photochemical and thermal reaction pathways at the initial stage of silicon–carbide ceramic formation from an acylsilane precursor, using a multiscale simulation approach that combines first-principles nonadiabatic and adiabatic quantum molecular dynamics simulations with semiempirical reactive molecular dynamics simulations. While photoexcitation causes scission of Si–C bonds within 100 fs driven by the localization of a photoexcited hole, the precursor remains stable at high temperatures up to 1800 K without photoexcitation. On longer time scales, we find thermal reaction pathways involving concerted motions of many atoms, including the formation of SiCO clusters, mainly resulting from oxygen of carbonyl carbon shifting and bonding with silicon. This microscopic understanding suggests synergistic use of photochemical and thermal pathways to design ultralow-energy and facile additive manufacturing of ceramics toward achieving a sustainable society.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"16 38","pages":"9874–9883"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photochemistry and Thermal Chemistry in Polymeric Ceramic Precursors\",\"authors\":\"Nabankur Dasgupta,&nbsp;, ,&nbsp;Kai Ito,&nbsp;, ,&nbsp;Thomas M. Linker,&nbsp;, ,&nbsp;Wataru Sugimoto,&nbsp;, ,&nbsp;Seyedmahmoud Mortazavi,&nbsp;, ,&nbsp;Rajiv K. Kalia,&nbsp;, ,&nbsp;Aiichiro Nakano*,&nbsp;, ,&nbsp;Alexander T. Radosevich,&nbsp;, ,&nbsp;Kohei Shimamura,&nbsp;, ,&nbsp;Fuyuki Shimojo,&nbsp;, ,&nbsp;Adri van Duin,&nbsp;, and ,&nbsp;Priya Vashishta,&nbsp;\",\"doi\":\"10.1021/acs.jpclett.5c02429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >While pyrolysis of polymeric precursors has gained attention for the additive manufacturing of ceramics, the high-temperature process is energy-inefficient and time-consuming. Recently, photochemistry has been suggested to reduce energy consumption and reaction time, but the microscopic mechanisms of such accelerated reactions remain elusive. Here, we reveal distinct photochemical and thermal reaction pathways at the initial stage of silicon–carbide ceramic formation from an acylsilane precursor, using a multiscale simulation approach that combines first-principles nonadiabatic and adiabatic quantum molecular dynamics simulations with semiempirical reactive molecular dynamics simulations. While photoexcitation causes scission of Si–C bonds within 100 fs driven by the localization of a photoexcited hole, the precursor remains stable at high temperatures up to 1800 K without photoexcitation. On longer time scales, we find thermal reaction pathways involving concerted motions of many atoms, including the formation of SiCO clusters, mainly resulting from oxygen of carbonyl carbon shifting and bonding with silicon. This microscopic understanding suggests synergistic use of photochemical and thermal pathways to design ultralow-energy and facile additive manufacturing of ceramics toward achieving a sustainable society.</p>\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"16 38\",\"pages\":\"9874–9883\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c02429\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c02429","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

聚合物前驱体的热解是陶瓷增材制造的重要技术之一,但高温热解过程能耗低、耗时长。近年来,光化学被认为可以减少能量消耗和反应时间,但这种加速反应的微观机制尚不清楚。本文采用多尺度模拟方法,将第一性原理非绝热和绝热量子分子动力学模拟与半经验反应分子动力学模拟相结合,揭示了酰基硅烷前驱体在碳化硅陶瓷形成初期的不同光化学和热反应途径。光激发会在100fs内引起Si-C键的断裂,而在没有光激发的情况下,前驱体在高达1800k的高温下保持稳定。在更长的时间尺度上,我们发现热反应途径涉及许多原子的协调运动,包括SiCO簇的形成,主要是由于羰基碳的氧移动并与硅结合。这种微观的理解表明,协同使用光化学和热途径来设计超低能量和简单的陶瓷增材制造,以实现可持续发展的社会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Photochemistry and Thermal Chemistry in Polymeric Ceramic Precursors

Photochemistry and Thermal Chemistry in Polymeric Ceramic Precursors

While pyrolysis of polymeric precursors has gained attention for the additive manufacturing of ceramics, the high-temperature process is energy-inefficient and time-consuming. Recently, photochemistry has been suggested to reduce energy consumption and reaction time, but the microscopic mechanisms of such accelerated reactions remain elusive. Here, we reveal distinct photochemical and thermal reaction pathways at the initial stage of silicon–carbide ceramic formation from an acylsilane precursor, using a multiscale simulation approach that combines first-principles nonadiabatic and adiabatic quantum molecular dynamics simulations with semiempirical reactive molecular dynamics simulations. While photoexcitation causes scission of Si–C bonds within 100 fs driven by the localization of a photoexcited hole, the precursor remains stable at high temperatures up to 1800 K without photoexcitation. On longer time scales, we find thermal reaction pathways involving concerted motions of many atoms, including the formation of SiCO clusters, mainly resulting from oxygen of carbonyl carbon shifting and bonding with silicon. This microscopic understanding suggests synergistic use of photochemical and thermal pathways to design ultralow-energy and facile additive manufacturing of ceramics toward achieving a sustainable society.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信