肥胖的遗传分型揭示了肥胖从其心脏代谢合并症解耦的生物学见解

IF 50 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Nathalie Chami, Zhe Wang, Victor Svenstrup, Virginia Diez Obrero, Daiane Hemerich, Yi Huang, Hesam Dashti, Eleonora Manitta, Michael H. Preuss, Kari E. North, Louise Aas Holm, Cilius E. Fonvig, Jens-Christian Holm, Torben Hansen, Camilla Scheele, Alexander Rauch, Roelof A. J. Smit, Melina Claussnitzer, Ruth J. F. Loos
{"title":"肥胖的遗传分型揭示了肥胖从其心脏代谢合并症解耦的生物学见解","authors":"Nathalie Chami, Zhe Wang, Victor Svenstrup, Virginia Diez Obrero, Daiane Hemerich, Yi Huang, Hesam Dashti, Eleonora Manitta, Michael H. Preuss, Kari E. North, Louise Aas Holm, Cilius E. Fonvig, Jens-Christian Holm, Torben Hansen, Camilla Scheele, Alexander Rauch, Roelof A. J. Smit, Melina Claussnitzer, Ruth J. F. Loos","doi":"10.1038/s41591-025-03931-0","DOIUrl":null,"url":null,"abstract":"<p>Obesity is a heterogeneous condition not adequately captured by a single adiposity trait. We conducted a multi-trait genome-wide association analysis using individual-level data from 452,768 UK Biobank participants to study obesity in relation to cardiometabolic health. We defined continuous ‘uncoupling phenotypes’, ranging from high adiposity with healthy cardiometabolic profiles to low adiposity with unhealthy ones. We identified 266 variants across 205 genomic loci where adiposity-increasing alleles were simultaneously associated with lower cardiometabolic risk. A genetic risk score (GRS<sub>uncoupling</sub>) aggregating these variants was associated with a lower risk of cardiometabolic disorders, including dyslipidemia and ischemic heart disease, despite higher obesity risk; unlike an adiposity score based on body fat percentage-associated variants (GRS<sub>BFP</sub>). The 266 variants formed eight genetic subtypes of obesity, each with distinct risk profiles and pathway signatures. Proteomic analyses revealed signatures separating adiposity- and health-driven effects. Our findings reveal new mechanisms that uncouple obesity from cardiometabolic comorbidities and lay a foundation for genetically informed subtyping of obesity to support precision medicine.</p>","PeriodicalId":19037,"journal":{"name":"Nature Medicine","volume":"15 1","pages":""},"PeriodicalIF":50.0000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetic subtyping of obesity reveals biological insights into the uncoupling of adiposity from its cardiometabolic comorbidities\",\"authors\":\"Nathalie Chami, Zhe Wang, Victor Svenstrup, Virginia Diez Obrero, Daiane Hemerich, Yi Huang, Hesam Dashti, Eleonora Manitta, Michael H. Preuss, Kari E. North, Louise Aas Holm, Cilius E. Fonvig, Jens-Christian Holm, Torben Hansen, Camilla Scheele, Alexander Rauch, Roelof A. J. Smit, Melina Claussnitzer, Ruth J. F. Loos\",\"doi\":\"10.1038/s41591-025-03931-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Obesity is a heterogeneous condition not adequately captured by a single adiposity trait. We conducted a multi-trait genome-wide association analysis using individual-level data from 452,768 UK Biobank participants to study obesity in relation to cardiometabolic health. We defined continuous ‘uncoupling phenotypes’, ranging from high adiposity with healthy cardiometabolic profiles to low adiposity with unhealthy ones. We identified 266 variants across 205 genomic loci where adiposity-increasing alleles were simultaneously associated with lower cardiometabolic risk. A genetic risk score (GRS<sub>uncoupling</sub>) aggregating these variants was associated with a lower risk of cardiometabolic disorders, including dyslipidemia and ischemic heart disease, despite higher obesity risk; unlike an adiposity score based on body fat percentage-associated variants (GRS<sub>BFP</sub>). The 266 variants formed eight genetic subtypes of obesity, each with distinct risk profiles and pathway signatures. Proteomic analyses revealed signatures separating adiposity- and health-driven effects. Our findings reveal new mechanisms that uncouple obesity from cardiometabolic comorbidities and lay a foundation for genetically informed subtyping of obesity to support precision medicine.</p>\",\"PeriodicalId\":19037,\"journal\":{\"name\":\"Nature Medicine\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":50.0000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41591-025-03931-0\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41591-025-03931-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肥胖是一种异质性的状况,不能被单一的肥胖特征充分捕获。我们使用来自452,768名英国生物银行参与者的个人水平数据进行了多性状全基因组关联分析,以研究肥胖与心脏代谢健康的关系。我们定义了连续的“解耦表型”,范围从具有健康心脏代谢谱的高肥胖到具有不健康心脏代谢谱的低肥胖。我们在205个基因组位点中鉴定出266个变异,其中肥胖增加等位基因同时与较低的心脏代谢风险相关。汇总这些变异的遗传风险评分(GRSuncoupling)与较低的心脏代谢紊乱(包括血脂异常和缺血性心脏病)风险相关,尽管肥胖风险较高;不像基于体脂百分比相关变异(GRSBFP)的肥胖评分。266种变异形成了8种肥胖基因亚型,每种亚型都有不同的风险概况和途径特征。蛋白质组学分析揭示了区分肥胖和健康驱动效应的特征。我们的研究结果揭示了将肥胖与心脏代谢合并症分开的新机制,并为肥胖的基因分型奠定了基础,以支持精准医学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Genetic subtyping of obesity reveals biological insights into the uncoupling of adiposity from its cardiometabolic comorbidities

Genetic subtyping of obesity reveals biological insights into the uncoupling of adiposity from its cardiometabolic comorbidities

Obesity is a heterogeneous condition not adequately captured by a single adiposity trait. We conducted a multi-trait genome-wide association analysis using individual-level data from 452,768 UK Biobank participants to study obesity in relation to cardiometabolic health. We defined continuous ‘uncoupling phenotypes’, ranging from high adiposity with healthy cardiometabolic profiles to low adiposity with unhealthy ones. We identified 266 variants across 205 genomic loci where adiposity-increasing alleles were simultaneously associated with lower cardiometabolic risk. A genetic risk score (GRSuncoupling) aggregating these variants was associated with a lower risk of cardiometabolic disorders, including dyslipidemia and ischemic heart disease, despite higher obesity risk; unlike an adiposity score based on body fat percentage-associated variants (GRSBFP). The 266 variants formed eight genetic subtypes of obesity, each with distinct risk profiles and pathway signatures. Proteomic analyses revealed signatures separating adiposity- and health-driven effects. Our findings reveal new mechanisms that uncouple obesity from cardiometabolic comorbidities and lay a foundation for genetically informed subtyping of obesity to support precision medicine.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Medicine
Nature Medicine 医学-生化与分子生物学
CiteScore
100.90
自引率
0.70%
发文量
525
审稿时长
1 months
期刊介绍: Nature Medicine is a monthly journal publishing original peer-reviewed research in all areas of medicine. The publication focuses on originality, timeliness, interdisciplinary interest, and the impact on improving human health. In addition to research articles, Nature Medicine also publishes commissioned content such as News, Reviews, and Perspectives. This content aims to provide context for the latest advances in translational and clinical research, reaching a wide audience of M.D. and Ph.D. readers. All editorial decisions for the journal are made by a team of full-time professional editors. Nature Medicine consider all types of clinical research, including: -Case-reports and small case series -Clinical trials, whether phase 1, 2, 3 or 4 -Observational studies -Meta-analyses -Biomarker studies -Public and global health studies Nature Medicine is also committed to facilitating communication between translational and clinical researchers. As such, we consider “hybrid” studies with preclinical and translational findings reported alongside data from clinical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信