肿瘤早期剂量优化试验的估计。

IF 1.8 3区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Ayon Mukherjee, Jonathan L. Moscovici, Zheng Liu
{"title":"肿瘤早期剂量优化试验的估计。","authors":"Ayon Mukherjee,&nbsp;Jonathan L. Moscovici,&nbsp;Zheng Liu","doi":"10.1002/bimj.70072","DOIUrl":null,"url":null,"abstract":"<p>Phase I dose escalation trials in oncology generally aim to find the maximum tolerated dose. However, with the advent of molecular-targeted therapies and antibody drug conjugates, dose-limiting toxicities are less frequently observed, giving rise to the concept of optimal biological dose (OBD), which considers both efficacy and toxicity. The estimand framework presented in the addendum of the ICH E9(R1) guidelines strengthens the dialogue between different stakeholders by bringing in greater clarity in the clinical trial objectives and by providing alignment between the targeted estimand under consideration and the statistical analysis methods. However, there is a lack of clarity in implementing this framework in early-phase dose optimization studies. This paper aims to discuss the estimand framework for dose optimization trials in oncology, considering efficacy and toxicity through utility functions. Such trials should include pharmacokinetics data, toxicity data, and efficacy data. Based on these data, the analysis methods used to identify the optimized dose/s are also described. Focusing on optimizing the utility function to estimate the OBD, the population-level summary measure should reflect only the properties used for estimating this utility function. A detailed strategy recommendation for intercurrent events has been provided using a real-life oncology case study. Key recommendations regarding the estimand attributes include that in a seamless phase I/II dose optimization trial, the treatment attribute should start when the subject receives the first dose. We argue that such a framework brings in additional clarity to dose optimization trial objectives and strengthens the understanding of the drug under consideration, which would enable the correct dose to move to phase II of clinical development.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"67 5","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.70072","citationCount":"0","resultStr":"{\"title\":\"Estimands for Early-Phase Dose Optimization Trials in Oncology\",\"authors\":\"Ayon Mukherjee,&nbsp;Jonathan L. Moscovici,&nbsp;Zheng Liu\",\"doi\":\"10.1002/bimj.70072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Phase I dose escalation trials in oncology generally aim to find the maximum tolerated dose. However, with the advent of molecular-targeted therapies and antibody drug conjugates, dose-limiting toxicities are less frequently observed, giving rise to the concept of optimal biological dose (OBD), which considers both efficacy and toxicity. The estimand framework presented in the addendum of the ICH E9(R1) guidelines strengthens the dialogue between different stakeholders by bringing in greater clarity in the clinical trial objectives and by providing alignment between the targeted estimand under consideration and the statistical analysis methods. However, there is a lack of clarity in implementing this framework in early-phase dose optimization studies. This paper aims to discuss the estimand framework for dose optimization trials in oncology, considering efficacy and toxicity through utility functions. Such trials should include pharmacokinetics data, toxicity data, and efficacy data. Based on these data, the analysis methods used to identify the optimized dose/s are also described. Focusing on optimizing the utility function to estimate the OBD, the population-level summary measure should reflect only the properties used for estimating this utility function. A detailed strategy recommendation for intercurrent events has been provided using a real-life oncology case study. Key recommendations regarding the estimand attributes include that in a seamless phase I/II dose optimization trial, the treatment attribute should start when the subject receives the first dose. We argue that such a framework brings in additional clarity to dose optimization trial objectives and strengthens the understanding of the drug under consideration, which would enable the correct dose to move to phase II of clinical development.</p>\",\"PeriodicalId\":55360,\"journal\":{\"name\":\"Biometrical Journal\",\"volume\":\"67 5\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.70072\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrical Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bimj.70072\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.70072","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肿瘤学I期剂量递增试验通常旨在找到最大耐受剂量。然而,随着分子靶向治疗和抗体药物偶联物的出现,剂量限制性毒性较少被观察到,从而产生了最佳生物剂量(OBD)的概念,该概念同时考虑了疗效和毒性。ICH E9(R1)指南附录中提出的评估框架通过使临床试验目标更加清晰,并通过在考虑的目标评估与统计分析方法之间提供一致性,加强了不同利益相关者之间的对话。然而,在早期剂量优化研究中实施这一框架缺乏明确性。本文旨在探讨肿瘤剂量优化试验的估计框架,通过效用函数考虑疗效和毒性。此类试验应包括药代动力学数据、毒性数据和疗效数据。在此基础上,介绍了确定最佳剂量/s的分析方法。关注于优化效用函数来估计OBD,总体水平的汇总度量应该只反映用于估计该效用函数的属性。通过一个真实的肿瘤学案例研究,对并发事件提供了详细的策略建议。关于估计属性的关键建议包括,在无缝I/II期剂量优化试验中,治疗属性应在受试者接受第一次剂量时开始。我们认为,这样的框架为剂量优化试验目标带来了额外的清晰度,并加强了对正在考虑的药物的理解,这将使正确的剂量进入临床开发的第二阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Estimands for Early-Phase Dose Optimization Trials in Oncology

Estimands for Early-Phase Dose Optimization Trials in Oncology

Phase I dose escalation trials in oncology generally aim to find the maximum tolerated dose. However, with the advent of molecular-targeted therapies and antibody drug conjugates, dose-limiting toxicities are less frequently observed, giving rise to the concept of optimal biological dose (OBD), which considers both efficacy and toxicity. The estimand framework presented in the addendum of the ICH E9(R1) guidelines strengthens the dialogue between different stakeholders by bringing in greater clarity in the clinical trial objectives and by providing alignment between the targeted estimand under consideration and the statistical analysis methods. However, there is a lack of clarity in implementing this framework in early-phase dose optimization studies. This paper aims to discuss the estimand framework for dose optimization trials in oncology, considering efficacy and toxicity through utility functions. Such trials should include pharmacokinetics data, toxicity data, and efficacy data. Based on these data, the analysis methods used to identify the optimized dose/s are also described. Focusing on optimizing the utility function to estimate the OBD, the population-level summary measure should reflect only the properties used for estimating this utility function. A detailed strategy recommendation for intercurrent events has been provided using a real-life oncology case study. Key recommendations regarding the estimand attributes include that in a seamless phase I/II dose optimization trial, the treatment attribute should start when the subject receives the first dose. We argue that such a framework brings in additional clarity to dose optimization trial objectives and strengthens the understanding of the drug under consideration, which would enable the correct dose to move to phase II of clinical development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrical Journal
Biometrical Journal 生物-数学与计算生物学
CiteScore
3.20
自引率
5.90%
发文量
119
审稿时长
6-12 weeks
期刊介绍: Biometrical Journal publishes papers on statistical methods and their applications in life sciences including medicine, environmental sciences and agriculture. Methodological developments should be motivated by an interesting and relevant problem from these areas. Ideally the manuscript should include a description of the problem and a section detailing the application of the new methodology to the problem. Case studies, review articles and letters to the editors are also welcome. Papers containing only extensive mathematical theory are not suitable for publication in Biometrical Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信