精确切肾片支架的再细胞化。

Haitham Salti, Sophie-Charlotte Nelz, Sarina Lichtwark, Christopher Pohl, Lea Kramer, Mathias Lorenz, Heiko Lemcke, Sandra Doss, Steffen Mitzner, Reinhold Wasserkort
{"title":"精确切肾片支架的再细胞化。","authors":"Haitham Salti, Sophie-Charlotte Nelz, Sarina Lichtwark, Christopher Pohl, Lea Kramer, Mathias Lorenz, Heiko Lemcke, Sandra Doss, Steffen Mitzner, Reinhold Wasserkort","doi":"10.1088/1748-605X/ae05a4","DOIUrl":null,"url":null,"abstract":"<p><p>The global rise in chronic kidney disease necessitates innovative solutions for end-stage renal disease that can help to overcome the limitations of the only available treatment options, transplantation and dialysis. Tissue engineering presents a promising alternative, leveraging decellularized scaffolds to retain the extracellular matrix (ECM). However, optimizing methods for decellularization and recellularization remains a challenge. Here we present novel work which builds on our previous study where we investigated several decellularization protocols. In this study we analyzed the suitability of decellularized scaffolds for recellularization. Precision-cut kidney slices (PCKS) were utilized as a model to explore the impact of different decellularization protocols on scaffold recellularization. PCKS were pretreated physically followed by immersion decellularization in chemicals (CHEM-Imm). Physical pretreatments included high hydrostatic pressure (HHP-Imm) or freezing-thawing cycles (FTC-Imm). Scaffolds were recellularized, with human renal proximal tubular epithelial cells (RPTEC/TERT1). All scaffolds showed cell growth over the 7 d incubation period. Notably, FTC-Imm demonstrated the highest expression of the tight junction protein zonula-occludens-1 (ZO-1). Moreover, as the native kidney is composed of up to 30 different cell types, we utilized artificial neural networks to investigate the distribution and attachment patterns of RPTEC/TERT1 cells to determine if decellularized scaffolds retain cell specific attachment sites. It was revealed that, at least 97% of RPTEC/TERT1 cells were attached outside the Bowman capsules, potentially showing a clear tendency to attach to their original tubular sites. This suggests that the ECM retains instructive cues guiding the migration and attachment of the cells. Overall, our scoring system identified FTC-Imm as the most effective method.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recellularization of scaffolds derived from precision-cut kidney slices.\",\"authors\":\"Haitham Salti, Sophie-Charlotte Nelz, Sarina Lichtwark, Christopher Pohl, Lea Kramer, Mathias Lorenz, Heiko Lemcke, Sandra Doss, Steffen Mitzner, Reinhold Wasserkort\",\"doi\":\"10.1088/1748-605X/ae05a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The global rise in chronic kidney disease necessitates innovative solutions for end-stage renal disease that can help to overcome the limitations of the only available treatment options, transplantation and dialysis. Tissue engineering presents a promising alternative, leveraging decellularized scaffolds to retain the extracellular matrix (ECM). However, optimizing methods for decellularization and recellularization remains a challenge. Here we present novel work which builds on our previous study where we investigated several decellularization protocols. In this study we analyzed the suitability of decellularized scaffolds for recellularization. Precision-cut kidney slices (PCKS) were utilized as a model to explore the impact of different decellularization protocols on scaffold recellularization. PCKS were pretreated physically followed by immersion decellularization in chemicals (CHEM-Imm). Physical pretreatments included high hydrostatic pressure (HHP-Imm) or freezing-thawing cycles (FTC-Imm). Scaffolds were recellularized, with human renal proximal tubular epithelial cells (RPTEC/TERT1). All scaffolds showed cell growth over the 7 d incubation period. Notably, FTC-Imm demonstrated the highest expression of the tight junction protein zonula-occludens-1 (ZO-1). Moreover, as the native kidney is composed of up to 30 different cell types, we utilized artificial neural networks to investigate the distribution and attachment patterns of RPTEC/TERT1 cells to determine if decellularized scaffolds retain cell specific attachment sites. It was revealed that, at least 97% of RPTEC/TERT1 cells were attached outside the Bowman capsules, potentially showing a clear tendency to attach to their original tubular sites. This suggests that the ECM retains instructive cues guiding the migration and attachment of the cells. Overall, our scoring system identified FTC-Imm as the most effective method.</p>\",\"PeriodicalId\":72389,\"journal\":{\"name\":\"Biomedical materials (Bristol, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical materials (Bristol, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-605X/ae05a4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/ae05a4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

全球慢性肾脏疾病的增加需要针对终末期肾脏疾病的创新解决方案,这些解决方案可以帮助克服唯一可用的治疗方案,即移植和透析的局限性。组织工程提出了一个有前途的替代方案,利用去细胞支架来保留细胞外基质(ECM)。然而,优化脱细胞和再细胞化的方法仍然是一个挑战。在这里,我们提出了新的工作,建立在我们以前的研究,我们调查了几个脱细胞协议。在这项研究中,我们分析了脱细胞支架对再细胞化的适应性。采用精确切割肾片(PCKS)作为模型,探讨不同脱细胞方案对支架再细胞化的影响。对PCKS进行物理预处理,然后在化学物质中浸泡脱细胞(CHEM-Imm)。物理预处理包括高静水压力(HHP-Imm)或冻融循环(FTC-Imm)。支架用人肾近端小管上皮细胞(RPTEC/TERT1)再细胞化。在7天的培养期内,所有支架均有细胞生长。值得注意的是,FTC-Imm的紧密连接蛋白zonula-occludens-1 (ZO-1)表达最高。此外,由于天然肾脏由多达30种不同类型的细胞组成,我们利用人工神经网络(ANN)来研究RPT-EC/TERT1细胞的分布和附着模式,以确定脱细胞支架是否保留细胞特异性附着位点。结果显示,至少97%的RPTEC/TERT1细胞附着在Bowman胶囊外,潜在地显示出附着在其原始管状部位的明显趋势。这表明ECM保留了指导细胞迁移和附着的指导性线索。总的来说,我们的评分系统认为FTC-Imm是最有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recellularization of scaffolds derived from precision-cut kidney slices.

The global rise in chronic kidney disease necessitates innovative solutions for end-stage renal disease that can help to overcome the limitations of the only available treatment options, transplantation and dialysis. Tissue engineering presents a promising alternative, leveraging decellularized scaffolds to retain the extracellular matrix (ECM). However, optimizing methods for decellularization and recellularization remains a challenge. Here we present novel work which builds on our previous study where we investigated several decellularization protocols. In this study we analyzed the suitability of decellularized scaffolds for recellularization. Precision-cut kidney slices (PCKS) were utilized as a model to explore the impact of different decellularization protocols on scaffold recellularization. PCKS were pretreated physically followed by immersion decellularization in chemicals (CHEM-Imm). Physical pretreatments included high hydrostatic pressure (HHP-Imm) or freezing-thawing cycles (FTC-Imm). Scaffolds were recellularized, with human renal proximal tubular epithelial cells (RPTEC/TERT1). All scaffolds showed cell growth over the 7 d incubation period. Notably, FTC-Imm demonstrated the highest expression of the tight junction protein zonula-occludens-1 (ZO-1). Moreover, as the native kidney is composed of up to 30 different cell types, we utilized artificial neural networks to investigate the distribution and attachment patterns of RPTEC/TERT1 cells to determine if decellularized scaffolds retain cell specific attachment sites. It was revealed that, at least 97% of RPTEC/TERT1 cells were attached outside the Bowman capsules, potentially showing a clear tendency to attach to their original tubular sites. This suggests that the ECM retains instructive cues guiding the migration and attachment of the cells. Overall, our scoring system identified FTC-Imm as the most effective method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信