Ann Lin, Kaitlyn Spees, Raeline Valbuena, Jakob Wirbel, Aravind Natarajan, Nora Enright, Ami S Bhatt, Michael C Bassik
{"title":"肽显示系统鉴定了一种有效的突变β-黑色素细胞刺激激素激动剂的黑色素皮质素-4受体。","authors":"Ann Lin, Kaitlyn Spees, Raeline Valbuena, Jakob Wirbel, Aravind Natarajan, Nora Enright, Ami S Bhatt, Michael C Bassik","doi":"10.1016/j.xgen.2025.100988","DOIUrl":null,"url":null,"abstract":"<p><p>Non-olfactory G-protein-coupled receptors (GPCRs) regulate vital physiological functions and are targets for ∼34% of US Food and Drug Administration (FDA)-approved drugs. While small-molecule-activated GPCRs are well studied, there is growing interest in peptide GPCRs, particularly the melanocortin-4 receptor (MC4R), a key regulator of energy balance and appetite. Activation of MC4R by β-melanocyte-stimulating hormone (β-MSH) reduces food intake, and pathway dysfunction leads to obesity. However, current methods to study GPCR-peptide interactions are resource intensive and low throughput. To address this, we developed a high-throughput cell surface peptide display platform with a β-arrestin-based MC4R reporter to screen over 2,000 β-MSH point mutants. This approach identified peptide variants that significantly impact MC4R activation, including a novel D5H mutant with enhanced receptor activation. Our results demonstrate a scalable method to directly link GPCR activation to peptide variants, offering insights for therapeutic peptide design.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100988"},"PeriodicalIF":11.1000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A peptide display system identifies a potent mutant β-melanocyte-stimulating hormone agonist of melanocortin-4 receptor.\",\"authors\":\"Ann Lin, Kaitlyn Spees, Raeline Valbuena, Jakob Wirbel, Aravind Natarajan, Nora Enright, Ami S Bhatt, Michael C Bassik\",\"doi\":\"10.1016/j.xgen.2025.100988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Non-olfactory G-protein-coupled receptors (GPCRs) regulate vital physiological functions and are targets for ∼34% of US Food and Drug Administration (FDA)-approved drugs. While small-molecule-activated GPCRs are well studied, there is growing interest in peptide GPCRs, particularly the melanocortin-4 receptor (MC4R), a key regulator of energy balance and appetite. Activation of MC4R by β-melanocyte-stimulating hormone (β-MSH) reduces food intake, and pathway dysfunction leads to obesity. However, current methods to study GPCR-peptide interactions are resource intensive and low throughput. To address this, we developed a high-throughput cell surface peptide display platform with a β-arrestin-based MC4R reporter to screen over 2,000 β-MSH point mutants. This approach identified peptide variants that significantly impact MC4R activation, including a novel D5H mutant with enhanced receptor activation. Our results demonstrate a scalable method to directly link GPCR activation to peptide variants, offering insights for therapeutic peptide design.</p>\",\"PeriodicalId\":72539,\"journal\":{\"name\":\"Cell genomics\",\"volume\":\" \",\"pages\":\"100988\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xgen.2025.100988\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2025.100988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
A peptide display system identifies a potent mutant β-melanocyte-stimulating hormone agonist of melanocortin-4 receptor.
Non-olfactory G-protein-coupled receptors (GPCRs) regulate vital physiological functions and are targets for ∼34% of US Food and Drug Administration (FDA)-approved drugs. While small-molecule-activated GPCRs are well studied, there is growing interest in peptide GPCRs, particularly the melanocortin-4 receptor (MC4R), a key regulator of energy balance and appetite. Activation of MC4R by β-melanocyte-stimulating hormone (β-MSH) reduces food intake, and pathway dysfunction leads to obesity. However, current methods to study GPCR-peptide interactions are resource intensive and low throughput. To address this, we developed a high-throughput cell surface peptide display platform with a β-arrestin-based MC4R reporter to screen over 2,000 β-MSH point mutants. This approach identified peptide variants that significantly impact MC4R activation, including a novel D5H mutant with enhanced receptor activation. Our results demonstrate a scalable method to directly link GPCR activation to peptide variants, offering insights for therapeutic peptide design.