PATJ缺乏导致囊性肾病及相关纤毛病。

IF 3.6 Q2 GENETICS & HEREDITY
Daniel Epting, Daniela A Braun, Eva Decker, Elisabeth Ott, Tobias Eisenberger, Nadine Bachmann, Pavel Nedvetsky, Michael P Krahn, Friedhelm Hildebrandt, Carsten Bergmann
{"title":"PATJ缺乏导致囊性肾病及相关纤毛病。","authors":"Daniel Epting, Daniela A Braun, Eva Decker, Elisabeth Ott, Tobias Eisenberger, Nadine Bachmann, Pavel Nedvetsky, Michael P Krahn, Friedhelm Hildebrandt, Carsten Bergmann","doi":"10.1016/j.xhgg.2025.100514","DOIUrl":null,"url":null,"abstract":"<p><p>Cystic kidney disease and related ciliopathies are caused by pathogenic variants in genes that commonly result in ciliary dysfunction. For a substantial number of individuals affected by those cilia-related diseases, the causative gene remains unknown. Using massively parallel sequencing, we here identified a pathogenic bi-allelic variant in the gene encoding PALS1-associated tight junction protein ([PATJ] also known as inactivation-no-afterpotential D-like, INADL) in an individual with ciliopathy. The affected fetus carried the homozygous truncating PATJ nonsense variant c.830delC (p.Pro277fsX), and presented with a syndromic phenotype mainly characterized by polycystic kidney disease and hydrocephalus. Using zebrafish (Danio rerio) as a vertebrate in vivo model organism, we could validate our patient findings and demonstrated a ciliopathy phenotype. In addition, we were able to address a hitherto not described role of Patj for cilia formation and function. Taken together, with the Crumbs cell polarity complex member PATJ, we add a new member to the large family of ciliopathy-related human disease proteins that is different from the classical ciliopathy protein classes, and may offer new perspectives for drug development.</p>","PeriodicalId":34530,"journal":{"name":"HGG Advances","volume":" ","pages":"100514"},"PeriodicalIF":3.6000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12512994/pdf/","citationCount":"0","resultStr":"{\"title\":\"PATJ deficiency leads to cystic kidney disease and related ciliopathies.\",\"authors\":\"Daniel Epting, Daniela A Braun, Eva Decker, Elisabeth Ott, Tobias Eisenberger, Nadine Bachmann, Pavel Nedvetsky, Michael P Krahn, Friedhelm Hildebrandt, Carsten Bergmann\",\"doi\":\"10.1016/j.xhgg.2025.100514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cystic kidney disease and related ciliopathies are caused by pathogenic variants in genes that commonly result in ciliary dysfunction. For a substantial number of individuals affected by those cilia-related diseases, the causative gene remains unknown. Using massively parallel sequencing, we here identified a pathogenic bi-allelic variant in the gene encoding PALS1-associated tight junction protein ([PATJ] also known as inactivation-no-afterpotential D-like, INADL) in an individual with ciliopathy. The affected fetus carried the homozygous truncating PATJ nonsense variant c.830delC (p.Pro277fsX), and presented with a syndromic phenotype mainly characterized by polycystic kidney disease and hydrocephalus. Using zebrafish (Danio rerio) as a vertebrate in vivo model organism, we could validate our patient findings and demonstrated a ciliopathy phenotype. In addition, we were able to address a hitherto not described role of Patj for cilia formation and function. Taken together, with the Crumbs cell polarity complex member PATJ, we add a new member to the large family of ciliopathy-related human disease proteins that is different from the classical ciliopathy protein classes, and may offer new perspectives for drug development.</p>\",\"PeriodicalId\":34530,\"journal\":{\"name\":\"HGG Advances\",\"volume\":\" \",\"pages\":\"100514\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12512994/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HGG Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xhgg.2025.100514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HGG Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xhgg.2025.100514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

囊性肾病和相关纤毛病是由致病基因变异引起的,通常导致纤毛功能障碍。对于那些受纤毛相关疾病影响的大量个体,致病基因仍然未知。通过大规模平行测序,我们在一位纤毛病患者中发现了编码pals1相关紧密连接蛋白(PATJ,也称为无后电位失活d样蛋白,INADL)基因的致病性双等位基因变异。患病胎儿携带纯合子截断型PATJ无义变异c.830delC (p.Pro277fsX),表现为以多囊肾病(PKD)和脑积水为主要特征的综合征表型。使用斑马鱼(Danio rerio)作为脊椎动物体内模型生物,我们可以验证我们的患者发现并证明纤毛病表型。此外,我们能够解决迄今尚未描述的Patj对纤毛形成和功能的作用。综上所述,与碎屑细胞极性复合物成员PATJ一起,我们为与纤毛病相关的人类疾病蛋白大家族增加了一个新成员,不同于经典的纤毛病蛋白类,并可能为药物开发提供新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PATJ deficiency leads to cystic kidney disease and related ciliopathies.

Cystic kidney disease and related ciliopathies are caused by pathogenic variants in genes that commonly result in ciliary dysfunction. For a substantial number of individuals affected by those cilia-related diseases, the causative gene remains unknown. Using massively parallel sequencing, we here identified a pathogenic bi-allelic variant in the gene encoding PALS1-associated tight junction protein ([PATJ] also known as inactivation-no-afterpotential D-like, INADL) in an individual with ciliopathy. The affected fetus carried the homozygous truncating PATJ nonsense variant c.830delC (p.Pro277fsX), and presented with a syndromic phenotype mainly characterized by polycystic kidney disease and hydrocephalus. Using zebrafish (Danio rerio) as a vertebrate in vivo model organism, we could validate our patient findings and demonstrated a ciliopathy phenotype. In addition, we were able to address a hitherto not described role of Patj for cilia formation and function. Taken together, with the Crumbs cell polarity complex member PATJ, we add a new member to the large family of ciliopathy-related human disease proteins that is different from the classical ciliopathy protein classes, and may offer new perspectives for drug development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
HGG Advances
HGG Advances Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
4.30
自引率
4.50%
发文量
69
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信