Victor A da Silva, Man Chi Leung, McGregor Clayton, Leya Oommen, Hannia Madrigal, Zachary Laksman, Bosco Yu, Stephanie M Willerth
{"title":"构建生物打印人类心脏组织的框架:最近的发展和未来前景。","authors":"Victor A da Silva, Man Chi Leung, McGregor Clayton, Leya Oommen, Hannia Madrigal, Zachary Laksman, Bosco Yu, Stephanie M Willerth","doi":"10.1080/17460751.2025.2558269","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiac bioprinting holds great promise for creating patient-specific grafts and physiologically relevant drug-testing platforms, yet several critical challenges remain. This review identifies key barriers in current cardiac bioprinting approaches, including limitations in bioprinting precision, bioink development, vascularization, functional maturation, and scalable cell sourcing and processing. Recent advances, such as multimodal printing, hybrid bioinks, and perfusable constructs, are discussed with a focus on their application to drug discovery and graft fabrication. We emphasize that targeted maturation may suffice for drug screening, while graft applications demand greater complexity, scale, and immune compatibility. Addressing these challenges through integrated, multidisciplinary strategies will be essential to advance cardiac bioprinting toward clinical and preclinical impact.</p>","PeriodicalId":21043,"journal":{"name":"Regenerative medicine","volume":" ","pages":"409-430"},"PeriodicalIF":2.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12502817/pdf/","citationCount":"0","resultStr":"{\"title\":\"Building the framework for bioprinted human heart tissue: recent developments and future prospects.\",\"authors\":\"Victor A da Silva, Man Chi Leung, McGregor Clayton, Leya Oommen, Hannia Madrigal, Zachary Laksman, Bosco Yu, Stephanie M Willerth\",\"doi\":\"10.1080/17460751.2025.2558269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cardiac bioprinting holds great promise for creating patient-specific grafts and physiologically relevant drug-testing platforms, yet several critical challenges remain. This review identifies key barriers in current cardiac bioprinting approaches, including limitations in bioprinting precision, bioink development, vascularization, functional maturation, and scalable cell sourcing and processing. Recent advances, such as multimodal printing, hybrid bioinks, and perfusable constructs, are discussed with a focus on their application to drug discovery and graft fabrication. We emphasize that targeted maturation may suffice for drug screening, while graft applications demand greater complexity, scale, and immune compatibility. Addressing these challenges through integrated, multidisciplinary strategies will be essential to advance cardiac bioprinting toward clinical and preclinical impact.</p>\",\"PeriodicalId\":21043,\"journal\":{\"name\":\"Regenerative medicine\",\"volume\":\" \",\"pages\":\"409-430\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12502817/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regenerative medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/17460751.2025.2558269\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17460751.2025.2558269","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/11 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Building the framework for bioprinted human heart tissue: recent developments and future prospects.
Cardiac bioprinting holds great promise for creating patient-specific grafts and physiologically relevant drug-testing platforms, yet several critical challenges remain. This review identifies key barriers in current cardiac bioprinting approaches, including limitations in bioprinting precision, bioink development, vascularization, functional maturation, and scalable cell sourcing and processing. Recent advances, such as multimodal printing, hybrid bioinks, and perfusable constructs, are discussed with a focus on their application to drug discovery and graft fabrication. We emphasize that targeted maturation may suffice for drug screening, while graft applications demand greater complexity, scale, and immune compatibility. Addressing these challenges through integrated, multidisciplinary strategies will be essential to advance cardiac bioprinting toward clinical and preclinical impact.
期刊介绍:
Regenerative medicine replaces or regenerates human cells, tissue or organs, to restore or establish normal function*. Since 2006, Regenerative Medicine has been at the forefront of publishing the very best papers and reviews covering the entire regenerative medicine sector. The journal focusses on the entire spectrum of approaches to regenerative medicine, including small molecule drugs, biologics, biomaterials and tissue engineering, and cell and gene therapies – it’s all about regeneration and not a specific platform technology. The journal’s scope encompasses all aspects of the sector ranging from discovery research, through to clinical development, through to commercialization. Regenerative Medicine uniquely supports this important area of biomedical science and healthcare by providing a peer-reviewed journal totally committed to publishing the very best regenerative medicine research, clinical translation and commercialization.
Regenerative Medicine provides a specialist forum to address the important challenges and advances in regenerative medicine, delivering this essential information in concise, clear and attractive article formats – vital to a rapidly growing, multidisciplinary and increasingly time-constrained community.
Despite substantial developments in our knowledge and understanding of regeneration, the field is still in its infancy. However, progress is accelerating. The next few decades will see the discovery and development of transformative therapies for patients, and in some cases, even cures. Regenerative Medicine will continue to provide a critical overview of these advances as they progress, undergo clinical trials, and eventually become mainstream medicine.