利用计算机和体外方法确定前列腺癌的药物靶点和评估klk3靶向抑制剂。

IF 3.5 4区 医学 Q2 ONCOLOGY
Imran Zafar, Shaista Shafiq, Adil Jamal, Mohamed Mohany, Muhammad Shafiq, Mohammad Amjad Kamal, Najeeb Ullah Khan
{"title":"利用计算机和体外方法确定前列腺癌的药物靶点和评估klk3靶向抑制剂。","authors":"Imran Zafar, Shaista Shafiq, Adil Jamal, Mohamed Mohany, Muhammad Shafiq, Mohammad Amjad Kamal, Najeeb Ullah Khan","doi":"10.1007/s12032-025-02896-x","DOIUrl":null,"url":null,"abstract":"<p><p>Prostate cancer remains a significant oncological challenge, driven by molecular factors such as KLK3 (kallikrein-related peptidase 3). Text mining of 237,357 PubMed articles identified KLK3 as the most frequently cited protein (10,477 mentions in titles; 162,619 in abstracts), with strong co-mentions of AR, TMPRSS2, and ERG (χ<sup>2</sup>, *p* < 0.001). Structural modeling of KLK3 (PDB: 2ANY) using I-TASSER yielded a high-confidence 3D structure (C-score: 0.73), validated by Ramachandran analysis, with 99.5% of residues falling in favored regions. Phytochemical profiling of Curcuma longa revealed potent bioactive constituents, with leaf extracts showing the highest total phenolic (510.7 ± 0.07 µg/mL) and flavonoid (498.9 ± 0.05 µg/mL) content. LC-MS identified 23 bioactive compounds, which exhibited exceptional binding affinity. Virtual screening of FDA-approved drugs (- 11.8 to - 9.4 kcal/mol), food-derived compounds (- 10.0 to - 9.1 kcal/mol), and natural products (- 11.4 to - 8.8 kcal/mol) revealed significant differences in binding affinities. MK3207 showed the highest binding affinity (- 11.7 kcal/mol), followed by MolPort-039-338-696 (- 11.4 kcal/mol), with key interactions at PHE-110 and THR-167. In-silico docking shows that MK3207 exhibits the strongest binding affinity to KLK3 (- 11.7 kcal/mol), with accuracy validated by an RMSD of 0.195 Å. Pharmacokinetic and drug-likeness evaluation of MK3207 indicated moderate solubility (Log S: - 4.58 to - 5.02), high lipophilicity (consensus log P<sub>o</sub>/w: 3.39), favorable drug-likeness (no PAINS/Lipinski violations, bioavailability score: 0.55, synthetic accessibility: 5.21). MD simulations (100 ns) confirmed stable KLK3-ligand binding (final RMSD: 4.3 Å protein, 3.1 Å ligand; average RMSD: 3.99 Å C-α, 3.97 Å backbone, 5.41 Å sidechain). The complex exhibited moderate flexibility (RMSF peaks: 1-4 Å), 28.32% secondary structure, and persistent interactions (hydrophobic: VAL-49, PHE-110; hydrogen bonds: THR-167, SER-213). MM-GBSA analysis revealed strong binding energy (- 75.57 to - 66.36 kcal/mol) and consistent ligand efficiency. This study bridges computational drug discovery and phytochemical analysis, nominating Curcuma longa derivatives and MK3207 as promising KLK3 inhibitors for PC therapy.</p>","PeriodicalId":18433,"journal":{"name":"Medical Oncology","volume":"42 11","pages":"469"},"PeriodicalIF":3.5000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying drug targets and evaluating KLK3-targeted inhibitors for prostate cancer using in-silico and in-vitro approaches.\",\"authors\":\"Imran Zafar, Shaista Shafiq, Adil Jamal, Mohamed Mohany, Muhammad Shafiq, Mohammad Amjad Kamal, Najeeb Ullah Khan\",\"doi\":\"10.1007/s12032-025-02896-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prostate cancer remains a significant oncological challenge, driven by molecular factors such as KLK3 (kallikrein-related peptidase 3). Text mining of 237,357 PubMed articles identified KLK3 as the most frequently cited protein (10,477 mentions in titles; 162,619 in abstracts), with strong co-mentions of AR, TMPRSS2, and ERG (χ<sup>2</sup>, *p* < 0.001). Structural modeling of KLK3 (PDB: 2ANY) using I-TASSER yielded a high-confidence 3D structure (C-score: 0.73), validated by Ramachandran analysis, with 99.5% of residues falling in favored regions. Phytochemical profiling of Curcuma longa revealed potent bioactive constituents, with leaf extracts showing the highest total phenolic (510.7 ± 0.07 µg/mL) and flavonoid (498.9 ± 0.05 µg/mL) content. LC-MS identified 23 bioactive compounds, which exhibited exceptional binding affinity. Virtual screening of FDA-approved drugs (- 11.8 to - 9.4 kcal/mol), food-derived compounds (- 10.0 to - 9.1 kcal/mol), and natural products (- 11.4 to - 8.8 kcal/mol) revealed significant differences in binding affinities. MK3207 showed the highest binding affinity (- 11.7 kcal/mol), followed by MolPort-039-338-696 (- 11.4 kcal/mol), with key interactions at PHE-110 and THR-167. In-silico docking shows that MK3207 exhibits the strongest binding affinity to KLK3 (- 11.7 kcal/mol), with accuracy validated by an RMSD of 0.195 Å. Pharmacokinetic and drug-likeness evaluation of MK3207 indicated moderate solubility (Log S: - 4.58 to - 5.02), high lipophilicity (consensus log P<sub>o</sub>/w: 3.39), favorable drug-likeness (no PAINS/Lipinski violations, bioavailability score: 0.55, synthetic accessibility: 5.21). MD simulations (100 ns) confirmed stable KLK3-ligand binding (final RMSD: 4.3 Å protein, 3.1 Å ligand; average RMSD: 3.99 Å C-α, 3.97 Å backbone, 5.41 Å sidechain). The complex exhibited moderate flexibility (RMSF peaks: 1-4 Å), 28.32% secondary structure, and persistent interactions (hydrophobic: VAL-49, PHE-110; hydrogen bonds: THR-167, SER-213). MM-GBSA analysis revealed strong binding energy (- 75.57 to - 66.36 kcal/mol) and consistent ligand efficiency. This study bridges computational drug discovery and phytochemical analysis, nominating Curcuma longa derivatives and MK3207 as promising KLK3 inhibitors for PC therapy.</p>\",\"PeriodicalId\":18433,\"journal\":{\"name\":\"Medical Oncology\",\"volume\":\"42 11\",\"pages\":\"469\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12032-025-02896-x\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12032-025-02896-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

前列腺癌仍然是一个重大的肿瘤学挑战,由分子因子如KLK3(钾化钾素相关肽酶3)驱动。对237,357篇PubMed文章的文本挖掘发现,KLK3是最常被引用的蛋白质(标题中提及10,477次,摘要中提及162,619次),与AR, TMPRSS2和ERG的共同提及率很高(χ2, *p* o/w: 3.39),良好的药物相似性(无PAINS/Lipinski违规,生物利用度评分:0.55,合成可及性:5.21)。MD模拟(100 ns)证实了稳定的klk3配体结合(最终RMSD: 4.3 Å蛋白,3.1 Å配体;平均RMSD: 3.99 Å C-α, 3.97 Å主链,5.41 Å侧链)。该配合物具有中等的柔韧性(RMSF峰:1-4 Å), 28.32%的二级结构和持久的相互作用(疏水:VAL-49, PHE-110;氢键:r -167, SER-213)。MM-GBSA分析显示结合能较强(- 75.57 ~ - 66.36 kcal/mol),配体效率一致。本研究将计算药物发现和植物化学分析结合起来,提名姜黄衍生物和MK3207作为有前途的KLK3抑制剂用于PC治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying drug targets and evaluating KLK3-targeted inhibitors for prostate cancer using in-silico and in-vitro approaches.

Prostate cancer remains a significant oncological challenge, driven by molecular factors such as KLK3 (kallikrein-related peptidase 3). Text mining of 237,357 PubMed articles identified KLK3 as the most frequently cited protein (10,477 mentions in titles; 162,619 in abstracts), with strong co-mentions of AR, TMPRSS2, and ERG (χ2, *p* < 0.001). Structural modeling of KLK3 (PDB: 2ANY) using I-TASSER yielded a high-confidence 3D structure (C-score: 0.73), validated by Ramachandran analysis, with 99.5% of residues falling in favored regions. Phytochemical profiling of Curcuma longa revealed potent bioactive constituents, with leaf extracts showing the highest total phenolic (510.7 ± 0.07 µg/mL) and flavonoid (498.9 ± 0.05 µg/mL) content. LC-MS identified 23 bioactive compounds, which exhibited exceptional binding affinity. Virtual screening of FDA-approved drugs (- 11.8 to - 9.4 kcal/mol), food-derived compounds (- 10.0 to - 9.1 kcal/mol), and natural products (- 11.4 to - 8.8 kcal/mol) revealed significant differences in binding affinities. MK3207 showed the highest binding affinity (- 11.7 kcal/mol), followed by MolPort-039-338-696 (- 11.4 kcal/mol), with key interactions at PHE-110 and THR-167. In-silico docking shows that MK3207 exhibits the strongest binding affinity to KLK3 (- 11.7 kcal/mol), with accuracy validated by an RMSD of 0.195 Å. Pharmacokinetic and drug-likeness evaluation of MK3207 indicated moderate solubility (Log S: - 4.58 to - 5.02), high lipophilicity (consensus log Po/w: 3.39), favorable drug-likeness (no PAINS/Lipinski violations, bioavailability score: 0.55, synthetic accessibility: 5.21). MD simulations (100 ns) confirmed stable KLK3-ligand binding (final RMSD: 4.3 Å protein, 3.1 Å ligand; average RMSD: 3.99 Å C-α, 3.97 Å backbone, 5.41 Å sidechain). The complex exhibited moderate flexibility (RMSF peaks: 1-4 Å), 28.32% secondary structure, and persistent interactions (hydrophobic: VAL-49, PHE-110; hydrogen bonds: THR-167, SER-213). MM-GBSA analysis revealed strong binding energy (- 75.57 to - 66.36 kcal/mol) and consistent ligand efficiency. This study bridges computational drug discovery and phytochemical analysis, nominating Curcuma longa derivatives and MK3207 as promising KLK3 inhibitors for PC therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical Oncology
Medical Oncology 医学-肿瘤学
CiteScore
4.20
自引率
2.90%
发文量
259
审稿时长
1.4 months
期刊介绍: Medical Oncology (MO) communicates the results of clinical and experimental research in oncology and hematology, particularly experimental therapeutics within the fields of immunotherapy and chemotherapy. It also provides state-of-the-art reviews on clinical and experimental therapies. Topics covered include immunobiology, pathogenesis, and treatment of malignant tumors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信