多回波BBB-ASL示踪动力学模型的结构与实际可识别性研究。

IF 3 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Tabitha J Manson, David L Thomas, Matthias Günther, Lynette J Tippett, Michael Dragunow, Catherine A Morgan, Vinod Suresh
{"title":"多回波BBB-ASL示踪动力学模型的结构与实际可识别性研究。","authors":"Tabitha J Manson, David L Thomas, Matthias Günther, Lynette J Tippett, Michael Dragunow, Catherine A Morgan, Vinod Suresh","doi":"10.1002/mrm.70075","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Tracer kinetic models are used in arterial spin labeling (ASL); however, deciding which model parameters to fix or fit is not always trivial. The identifiability of the resultant system of equations is useful to consider, since it will likely impact parameter uncertainty. Here, we analyze the identifiability of two-compartment models used in multi-echo (ME) blood-brain-barrier (BBB)-ASL and evaluate the reliability of the fitted water-transfer rate <math> <semantics><mrow><mo>(</mo> <msub><mi>k</mi> <mi>w</mi></msub> </mrow> <annotation>$$ \\Big({k}_w $$</annotation></semantics> </math> ).</p><p><strong>Method: </strong>The identifiability of two variants of a two-compartment model (referred to here as \"series\" and \"parallel\") were analyzed using sensitivity matrix and Monte-Carlo simulation methods, the latter including the effects of noise and fixed-parameter error. ME-ASL data were collected at 3T in 25 cognitively normal participants (57-85 y). In one volunteer, additional scans were acquired to estimate noise. Fits for whole-gray-matter <math> <semantics> <mrow><msub><mi>k</mi> <mi>w</mi></msub> </mrow> <annotation>$$ {k}_w $$</annotation></semantics> </math> were performed with a theoretically identifiable version of the model.</p><p><strong>Results: </strong>All models needed one or more fixed parameters to be structurally identifiable, with different combinations required for each. Practical identifiability analysis yielded <math> <semantics> <mrow><msub><mi>k</mi> <mi>w</mi></msub> </mrow> <annotation>$$ {k}_w $$</annotation></semantics> </math> estimates with a median absolute error of 29% (parallel model) and 33% (series model). Fits to data yielded median <math> <semantics> <mrow><msub><mi>k</mi> <mi>w</mi></msub> </mrow> <annotation>$$ {k}_w $$</annotation></semantics> </math> values of 0 (parallel) and 96 min<sup>-1</sup> (series).</p><p><strong>Conclusion: </strong>We used identifiability analysis to determine an appropriate BBB-ASL model for acquired data. Through simulations we showed that parameter estimates depend on model selection and the value of fixed parameters. We demonstrated that fixed-parameter value and errors significantly impact the reliability of <math> <semantics> <mrow><msub><mi>k</mi> <mi>w</mi></msub> </mrow> <annotation>$$ {k}_w $$</annotation></semantics> </math> values obtained from acquired ME-ASL images, even with structurally identifiable models.</p>","PeriodicalId":18065,"journal":{"name":"Magnetic Resonance in Medicine","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the structural and practical identifiability of multi-echo BBB-ASL tracer kinetic models.\",\"authors\":\"Tabitha J Manson, David L Thomas, Matthias Günther, Lynette J Tippett, Michael Dragunow, Catherine A Morgan, Vinod Suresh\",\"doi\":\"10.1002/mrm.70075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Tracer kinetic models are used in arterial spin labeling (ASL); however, deciding which model parameters to fix or fit is not always trivial. The identifiability of the resultant system of equations is useful to consider, since it will likely impact parameter uncertainty. Here, we analyze the identifiability of two-compartment models used in multi-echo (ME) blood-brain-barrier (BBB)-ASL and evaluate the reliability of the fitted water-transfer rate <math> <semantics><mrow><mo>(</mo> <msub><mi>k</mi> <mi>w</mi></msub> </mrow> <annotation>$$ \\\\Big({k}_w $$</annotation></semantics> </math> ).</p><p><strong>Method: </strong>The identifiability of two variants of a two-compartment model (referred to here as \\\"series\\\" and \\\"parallel\\\") were analyzed using sensitivity matrix and Monte-Carlo simulation methods, the latter including the effects of noise and fixed-parameter error. ME-ASL data were collected at 3T in 25 cognitively normal participants (57-85 y). In one volunteer, additional scans were acquired to estimate noise. Fits for whole-gray-matter <math> <semantics> <mrow><msub><mi>k</mi> <mi>w</mi></msub> </mrow> <annotation>$$ {k}_w $$</annotation></semantics> </math> were performed with a theoretically identifiable version of the model.</p><p><strong>Results: </strong>All models needed one or more fixed parameters to be structurally identifiable, with different combinations required for each. Practical identifiability analysis yielded <math> <semantics> <mrow><msub><mi>k</mi> <mi>w</mi></msub> </mrow> <annotation>$$ {k}_w $$</annotation></semantics> </math> estimates with a median absolute error of 29% (parallel model) and 33% (series model). Fits to data yielded median <math> <semantics> <mrow><msub><mi>k</mi> <mi>w</mi></msub> </mrow> <annotation>$$ {k}_w $$</annotation></semantics> </math> values of 0 (parallel) and 96 min<sup>-1</sup> (series).</p><p><strong>Conclusion: </strong>We used identifiability analysis to determine an appropriate BBB-ASL model for acquired data. Through simulations we showed that parameter estimates depend on model selection and the value of fixed parameters. We demonstrated that fixed-parameter value and errors significantly impact the reliability of <math> <semantics> <mrow><msub><mi>k</mi> <mi>w</mi></msub> </mrow> <annotation>$$ {k}_w $$</annotation></semantics> </math> values obtained from acquired ME-ASL images, even with structurally identifiable models.</p>\",\"PeriodicalId\":18065,\"journal\":{\"name\":\"Magnetic Resonance in Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/mrm.70075\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mrm.70075","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的:将示踪动力学模型应用于动脉自旋标记(ASL);然而,决定修复或拟合哪些模型参数并不总是微不足道的。考虑所得方程组的可辨识性是有用的,因为它可能会影响参数的不确定性。在这里,我们分析了用于多回声(ME)血脑屏障(BBB)-ASL的双室模型的可识别性,并评估了拟合的水传递率(k w $$ \Big({k}_w $$)的可靠性。方法:采用灵敏度矩阵法和蒙特卡罗模拟方法对两室模型(本文称“串联”和“并联”)的两种变体的可识别性进行分析,其中蒙特卡罗模拟包括噪声和固定参数误差的影响。在25名认知正常参与者(57-85岁)的3T时收集ME-ASL数据。在一名志愿者中,他们获得了额外的扫描来估计噪音。对全灰质k w $$ {k}_w $$进行拟合,使用理论可识别的模型版本。结果:所有模型都需要一个或多个固定参数来进行结构识别,每个参数需要不同的组合。实际可识别性分析产生了k w $$ {k}_w $$估计,中位数绝对误差为29% (parallel model) and 33% (series model). Fits to data yielded median k w $$ {k}_w $$ values of 0 (parallel) and 96 min-1 (series).Conclusion: We used identifiability analysis to determine an appropriate BBB-ASL model for acquired data. Through simulations we showed that parameter estimates depend on model selection and the value of fixed parameters. We demonstrated that fixed-parameter value and errors significantly impact the reliability of k w $$ {k}_w $$ values obtained from acquired ME-ASL images, even with structurally identifiable models.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the structural and practical identifiability of multi-echo BBB-ASL tracer kinetic models.

Purpose: Tracer kinetic models are used in arterial spin labeling (ASL); however, deciding which model parameters to fix or fit is not always trivial. The identifiability of the resultant system of equations is useful to consider, since it will likely impact parameter uncertainty. Here, we analyze the identifiability of two-compartment models used in multi-echo (ME) blood-brain-barrier (BBB)-ASL and evaluate the reliability of the fitted water-transfer rate ( k w $$ \Big({k}_w $$ ).

Method: The identifiability of two variants of a two-compartment model (referred to here as "series" and "parallel") were analyzed using sensitivity matrix and Monte-Carlo simulation methods, the latter including the effects of noise and fixed-parameter error. ME-ASL data were collected at 3T in 25 cognitively normal participants (57-85 y). In one volunteer, additional scans were acquired to estimate noise. Fits for whole-gray-matter k w $$ {k}_w $$ were performed with a theoretically identifiable version of the model.

Results: All models needed one or more fixed parameters to be structurally identifiable, with different combinations required for each. Practical identifiability analysis yielded k w $$ {k}_w $$ estimates with a median absolute error of 29% (parallel model) and 33% (series model). Fits to data yielded median k w $$ {k}_w $$ values of 0 (parallel) and 96 min-1 (series).

Conclusion: We used identifiability analysis to determine an appropriate BBB-ASL model for acquired data. Through simulations we showed that parameter estimates depend on model selection and the value of fixed parameters. We demonstrated that fixed-parameter value and errors significantly impact the reliability of k w $$ {k}_w $$ values obtained from acquired ME-ASL images, even with structurally identifiable models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
24.20%
发文量
376
审稿时长
2-4 weeks
期刊介绍: Magnetic Resonance in Medicine (Magn Reson Med) is an international journal devoted to the publication of original investigations concerned with all aspects of the development and use of nuclear magnetic resonance and electron paramagnetic resonance techniques for medical applications. Reports of original investigations in the areas of mathematics, computing, engineering, physics, biophysics, chemistry, biochemistry, and physiology directly relevant to magnetic resonance will be accepted, as well as methodology-oriented clinical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信