Jinjin Xu, Lingjia Kong, Elizabeth A Creasey, Sneha Rath, Lei Deng, Julian Avila-Pacheco, Chenhao Li, Blayne A Oliver, Tyler T Dao, Angela R Shih, Mark J Daly, Alex K Shalek, Clary B Clish, Daniel B Graham, Jacques Deguine, Ramnik J Xavier
{"title":"自身免疫性疾病风险基因ANKRD55通过代谢调节促进TH17效应功能。","authors":"Jinjin Xu, Lingjia Kong, Elizabeth A Creasey, Sneha Rath, Lei Deng, Julian Avila-Pacheco, Chenhao Li, Blayne A Oliver, Tyler T Dao, Angela R Shih, Mark J Daly, Alex K Shalek, Clary B Clish, Daniel B Graham, Jacques Deguine, Ramnik J Xavier","doi":"10.1084/jem.20250185","DOIUrl":null,"url":null,"abstract":"<p><p>Genome-wide association studies (GWAS) have linked the locus encoding ankyrin repeat domain 55 (ANKRD55) with numerous autoimmune diseases; however, its biological function and role in inflammation are unclear. Here, we demonstrate that Ankrd55-deficient mice are protected from T cell-mediated colitis but are more susceptible to Citrobacter rodentium infection. Mechanistically, Ankrd55 deletion impairs CD4+ T cell proliferation and reduces effector cytokine production in T helper 17 (TH17) cells in a cell-intrinsic manner. ANKRD55 is associated with mitochondria, and its loss is associated with impaired mitochondrial respiration and activation of the LKB1 pathway. Consistently, IL-17 production can be rescued by the deletion of LKB1 in Ankrd55-deficient T cells. Altogether, our study implicates the protein ANKRD55 as a functional modulator of T cell metabolism that directly impacts TH17 responses, highlighting it as a potential target across multiple autoimmune diseases.</p>","PeriodicalId":15760,"journal":{"name":"Journal of Experimental Medicine","volume":"222 11","pages":""},"PeriodicalIF":10.6000,"publicationDate":"2025-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autoimmune disease risk gene ANKRD55 promotes TH17 effector function through metabolic modulation.\",\"authors\":\"Jinjin Xu, Lingjia Kong, Elizabeth A Creasey, Sneha Rath, Lei Deng, Julian Avila-Pacheco, Chenhao Li, Blayne A Oliver, Tyler T Dao, Angela R Shih, Mark J Daly, Alex K Shalek, Clary B Clish, Daniel B Graham, Jacques Deguine, Ramnik J Xavier\",\"doi\":\"10.1084/jem.20250185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genome-wide association studies (GWAS) have linked the locus encoding ankyrin repeat domain 55 (ANKRD55) with numerous autoimmune diseases; however, its biological function and role in inflammation are unclear. Here, we demonstrate that Ankrd55-deficient mice are protected from T cell-mediated colitis but are more susceptible to Citrobacter rodentium infection. Mechanistically, Ankrd55 deletion impairs CD4+ T cell proliferation and reduces effector cytokine production in T helper 17 (TH17) cells in a cell-intrinsic manner. ANKRD55 is associated with mitochondria, and its loss is associated with impaired mitochondrial respiration and activation of the LKB1 pathway. Consistently, IL-17 production can be rescued by the deletion of LKB1 in Ankrd55-deficient T cells. Altogether, our study implicates the protein ANKRD55 as a functional modulator of T cell metabolism that directly impacts TH17 responses, highlighting it as a potential target across multiple autoimmune diseases.</p>\",\"PeriodicalId\":15760,\"journal\":{\"name\":\"Journal of Experimental Medicine\",\"volume\":\"222 11\",\"pages\":\"\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2025-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1084/jem.20250185\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1084/jem.20250185","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Autoimmune disease risk gene ANKRD55 promotes TH17 effector function through metabolic modulation.
Genome-wide association studies (GWAS) have linked the locus encoding ankyrin repeat domain 55 (ANKRD55) with numerous autoimmune diseases; however, its biological function and role in inflammation are unclear. Here, we demonstrate that Ankrd55-deficient mice are protected from T cell-mediated colitis but are more susceptible to Citrobacter rodentium infection. Mechanistically, Ankrd55 deletion impairs CD4+ T cell proliferation and reduces effector cytokine production in T helper 17 (TH17) cells in a cell-intrinsic manner. ANKRD55 is associated with mitochondria, and its loss is associated with impaired mitochondrial respiration and activation of the LKB1 pathway. Consistently, IL-17 production can be rescued by the deletion of LKB1 in Ankrd55-deficient T cells. Altogether, our study implicates the protein ANKRD55 as a functional modulator of T cell metabolism that directly impacts TH17 responses, highlighting it as a potential target across multiple autoimmune diseases.
期刊介绍:
Since its establishment in 1896, the Journal of Experimental Medicine (JEM) has steadfastly pursued the publication of enduring and exceptional studies in medical biology. In an era where numerous publishing groups are introducing specialized journals, we recognize the importance of offering a distinguished platform for studies that seamlessly integrate various disciplines within the pathogenesis field.
Our unique editorial system, driven by a commitment to exceptional author service, involves two collaborative groups of editors: professional editors with robust scientific backgrounds and full-time practicing scientists. Each paper undergoes evaluation by at least one editor from both groups before external review. Weekly editorial meetings facilitate comprehensive discussions on papers, incorporating external referee comments, and ensure swift decisions without unnecessary demands for extensive revisions.
Encompassing human studies and diverse in vivo experimental models of human disease, our focus within medical biology spans genetics, inflammation, immunity, infectious disease, cancer, vascular biology, metabolic disorders, neuroscience, and stem cell biology. We eagerly welcome reports ranging from atomic-level analyses to clinical interventions that unveil new mechanistic insights.