Qican Shangguan;Yue Lian;Zhiwei Liao;Jinshui Chen;Yiru Song;Ligang Yao;Cai Jiang;Zongxing Lu;Zhonghua Lin
{"title":"基于GAF编码的A模超声信号手势识别的轻量级CNN方法。","authors":"Qican Shangguan;Yue Lian;Zhiwei Liao;Jinshui Chen;Yiru Song;Ligang Yao;Cai Jiang;Zongxing Lu;Zhonghua Lin","doi":"10.1109/TNSRE.2025.3608180","DOIUrl":null,"url":null,"abstract":"Hand gesture recognition(HGR) is a key technology in human-computer interaction and human communication. This paper presents a lightweight, parameter-free attention convolutional neural network (LPA-CNN) approach leveraging Gramian Angular Field(GAF)transformation of A-mode ultrasound signals for HGR. First, this paper maps 1-dimensional (1D) A-mode ultrasound signals, collected from the forearm muscles of 10 healthy participants, into 2-dimensional (2D) images. Second, GAF is selected owing to its higher sensitivity against Markov Transition Field (MTF) and Recurrence Plot (RP) in HGR. Third, a novel LPA-CNN consisting of four components, i.e., a convolution-pooling block, an attention mechanism, an inverted residual block, and a classification block, is proposed. Among them, the convolution-pooling block consists of convolutional and pooling layers, the attention mechanism is applied to generate 3-D weights, the inverted residual block consists of multiple channel shuffling units, and the classification block is performed through fully connected layers. Fourth, comparative experiments were conducted on GoogLeNet, MobileNet, and LPA-CNN to validate the effectiveness of the proposed method. Experimental results show that compared to GoogLeNet and MobileNet, LPA-CNN has a smaller model size and better recognition performance, achieving a classification accuracy of 0.98 ± 0.02. This paper achieves efficient and high-accuracy HGR by encoding A-mode ultrasound signals into 2D images and integrating the LPA-CNN model, providing a new technological approach for HGR based on ultrasonic signals.","PeriodicalId":13419,"journal":{"name":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","volume":"33 ","pages":"3734-3743"},"PeriodicalIF":5.2000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11156155","citationCount":"0","resultStr":"{\"title\":\"A Lightweight CNN Approach for Hand Gesture Recognition via GAF Encoding of A-Mode Ultrasound Signals\",\"authors\":\"Qican Shangguan;Yue Lian;Zhiwei Liao;Jinshui Chen;Yiru Song;Ligang Yao;Cai Jiang;Zongxing Lu;Zhonghua Lin\",\"doi\":\"10.1109/TNSRE.2025.3608180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hand gesture recognition(HGR) is a key technology in human-computer interaction and human communication. This paper presents a lightweight, parameter-free attention convolutional neural network (LPA-CNN) approach leveraging Gramian Angular Field(GAF)transformation of A-mode ultrasound signals for HGR. First, this paper maps 1-dimensional (1D) A-mode ultrasound signals, collected from the forearm muscles of 10 healthy participants, into 2-dimensional (2D) images. Second, GAF is selected owing to its higher sensitivity against Markov Transition Field (MTF) and Recurrence Plot (RP) in HGR. Third, a novel LPA-CNN consisting of four components, i.e., a convolution-pooling block, an attention mechanism, an inverted residual block, and a classification block, is proposed. Among them, the convolution-pooling block consists of convolutional and pooling layers, the attention mechanism is applied to generate 3-D weights, the inverted residual block consists of multiple channel shuffling units, and the classification block is performed through fully connected layers. Fourth, comparative experiments were conducted on GoogLeNet, MobileNet, and LPA-CNN to validate the effectiveness of the proposed method. Experimental results show that compared to GoogLeNet and MobileNet, LPA-CNN has a smaller model size and better recognition performance, achieving a classification accuracy of 0.98 ± 0.02. This paper achieves efficient and high-accuracy HGR by encoding A-mode ultrasound signals into 2D images and integrating the LPA-CNN model, providing a new technological approach for HGR based on ultrasonic signals.\",\"PeriodicalId\":13419,\"journal\":{\"name\":\"IEEE Transactions on Neural Systems and Rehabilitation Engineering\",\"volume\":\"33 \",\"pages\":\"3734-3743\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11156155\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Neural Systems and Rehabilitation Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11156155/\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11156155/","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A Lightweight CNN Approach for Hand Gesture Recognition via GAF Encoding of A-Mode Ultrasound Signals
Hand gesture recognition(HGR) is a key technology in human-computer interaction and human communication. This paper presents a lightweight, parameter-free attention convolutional neural network (LPA-CNN) approach leveraging Gramian Angular Field(GAF)transformation of A-mode ultrasound signals for HGR. First, this paper maps 1-dimensional (1D) A-mode ultrasound signals, collected from the forearm muscles of 10 healthy participants, into 2-dimensional (2D) images. Second, GAF is selected owing to its higher sensitivity against Markov Transition Field (MTF) and Recurrence Plot (RP) in HGR. Third, a novel LPA-CNN consisting of four components, i.e., a convolution-pooling block, an attention mechanism, an inverted residual block, and a classification block, is proposed. Among them, the convolution-pooling block consists of convolutional and pooling layers, the attention mechanism is applied to generate 3-D weights, the inverted residual block consists of multiple channel shuffling units, and the classification block is performed through fully connected layers. Fourth, comparative experiments were conducted on GoogLeNet, MobileNet, and LPA-CNN to validate the effectiveness of the proposed method. Experimental results show that compared to GoogLeNet and MobileNet, LPA-CNN has a smaller model size and better recognition performance, achieving a classification accuracy of 0.98 ± 0.02. This paper achieves efficient and high-accuracy HGR by encoding A-mode ultrasound signals into 2D images and integrating the LPA-CNN model, providing a new technological approach for HGR based on ultrasonic signals.
期刊介绍:
Rehabilitative and neural aspects of biomedical engineering, including functional electrical stimulation, acoustic dynamics, human performance measurement and analysis, nerve stimulation, electromyography, motor control and stimulation; and hardware and software applications for rehabilitation engineering and assistive devices.