{"title":"电迷走神经刺激通过SIRT1/PGC-1α途径改善线粒体生物发生改善心脏缺血再灌注损伤","authors":"Yingqiang Guo, Yu Zhang, Jinzhou Zhang, Xingwan Bai, Wei Kang, Yujie Guo, Xianming Zeng","doi":"10.1007/s12010-025-05359-1","DOIUrl":null,"url":null,"abstract":"<p><p>Vagus nerve stimulation (VNS) has demonstrated cardioprotective effects in a variety of cardiovascular diseases, including cardiac ischemia and reperfusion (IR) injury. However, the mechanisms responsible for these effects have not been completely understood. The present work aimed to uncover the potential mechanisms through which VNS confers protection against cardiac IR injury. Rats subjected to cardiac IR injury received electrical VNS through the right cervical vagus nerve. This intervention led to a notable reduction in cardiac dysfunction and injury, as well as decreased cardiac apoptosis, oxidative stress, and inflammation. Moreover, VNS treatment improved mitochondrial biogenesis by upregulating estrogen-related receptor α (ERRα), nuclear respiratory factor 1 (NRF-1), and transcriptional factor A mitochondrial (TFAM). In addition, VNS treatment not only increased the copy number of mitochondrial DNA (mtDNA) and the content of adenosine triphosphate (ATP), but also effectively reduced mitochondrial damage. VNS also upregulated the expression of silent information regulator 1 (SIRT1) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) in IR-injured hearts. Inhibition of either SIRT1 or PGC-1α significantly reversed the effects of VNS on mitochondrial biogenesis and abolished its cardioprotective benefits. Notably, VNS increased the level of acetylcholine (ACh) in IR-injured hearts. Administration of atropine, a muscarinic ACh receptor (mAChR) antagonist, counteracted the effects of VNS on the SIRT1/PGC-1α pathway, mitochondrial biogenesis, and the associated cardioprotective outcomes. These findings suggest that VNS protects against cardiac I/R injury by enhancing mitochondrial biogenesis. This beneficial effect of VNS on mitochondrial biogenesis is attributed to activation of the SIRT1/PGC-1α pathway through the ACh/mAChR axis. Therefore, this research offers fresh perspectives on the mechanisms underlying the cardioprotective effects of VNS.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrical Vagus Nerve Stimulation Ameliorates Cardiac Ischemia and Reperfusion Injury by Improving Mitochondrial Biogenesis Through the SIRT1/PGC-1α Pathway.\",\"authors\":\"Yingqiang Guo, Yu Zhang, Jinzhou Zhang, Xingwan Bai, Wei Kang, Yujie Guo, Xianming Zeng\",\"doi\":\"10.1007/s12010-025-05359-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vagus nerve stimulation (VNS) has demonstrated cardioprotective effects in a variety of cardiovascular diseases, including cardiac ischemia and reperfusion (IR) injury. However, the mechanisms responsible for these effects have not been completely understood. The present work aimed to uncover the potential mechanisms through which VNS confers protection against cardiac IR injury. Rats subjected to cardiac IR injury received electrical VNS through the right cervical vagus nerve. This intervention led to a notable reduction in cardiac dysfunction and injury, as well as decreased cardiac apoptosis, oxidative stress, and inflammation. Moreover, VNS treatment improved mitochondrial biogenesis by upregulating estrogen-related receptor α (ERRα), nuclear respiratory factor 1 (NRF-1), and transcriptional factor A mitochondrial (TFAM). In addition, VNS treatment not only increased the copy number of mitochondrial DNA (mtDNA) and the content of adenosine triphosphate (ATP), but also effectively reduced mitochondrial damage. VNS also upregulated the expression of silent information regulator 1 (SIRT1) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) in IR-injured hearts. Inhibition of either SIRT1 or PGC-1α significantly reversed the effects of VNS on mitochondrial biogenesis and abolished its cardioprotective benefits. Notably, VNS increased the level of acetylcholine (ACh) in IR-injured hearts. Administration of atropine, a muscarinic ACh receptor (mAChR) antagonist, counteracted the effects of VNS on the SIRT1/PGC-1α pathway, mitochondrial biogenesis, and the associated cardioprotective outcomes. These findings suggest that VNS protects against cardiac I/R injury by enhancing mitochondrial biogenesis. This beneficial effect of VNS on mitochondrial biogenesis is attributed to activation of the SIRT1/PGC-1α pathway through the ACh/mAChR axis. Therefore, this research offers fresh perspectives on the mechanisms underlying the cardioprotective effects of VNS.</p>\",\"PeriodicalId\":465,\"journal\":{\"name\":\"Applied Biochemistry and Biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Biochemistry and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12010-025-05359-1\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-025-05359-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Electrical Vagus Nerve Stimulation Ameliorates Cardiac Ischemia and Reperfusion Injury by Improving Mitochondrial Biogenesis Through the SIRT1/PGC-1α Pathway.
Vagus nerve stimulation (VNS) has demonstrated cardioprotective effects in a variety of cardiovascular diseases, including cardiac ischemia and reperfusion (IR) injury. However, the mechanisms responsible for these effects have not been completely understood. The present work aimed to uncover the potential mechanisms through which VNS confers protection against cardiac IR injury. Rats subjected to cardiac IR injury received electrical VNS through the right cervical vagus nerve. This intervention led to a notable reduction in cardiac dysfunction and injury, as well as decreased cardiac apoptosis, oxidative stress, and inflammation. Moreover, VNS treatment improved mitochondrial biogenesis by upregulating estrogen-related receptor α (ERRα), nuclear respiratory factor 1 (NRF-1), and transcriptional factor A mitochondrial (TFAM). In addition, VNS treatment not only increased the copy number of mitochondrial DNA (mtDNA) and the content of adenosine triphosphate (ATP), but also effectively reduced mitochondrial damage. VNS also upregulated the expression of silent information regulator 1 (SIRT1) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) in IR-injured hearts. Inhibition of either SIRT1 or PGC-1α significantly reversed the effects of VNS on mitochondrial biogenesis and abolished its cardioprotective benefits. Notably, VNS increased the level of acetylcholine (ACh) in IR-injured hearts. Administration of atropine, a muscarinic ACh receptor (mAChR) antagonist, counteracted the effects of VNS on the SIRT1/PGC-1α pathway, mitochondrial biogenesis, and the associated cardioprotective outcomes. These findings suggest that VNS protects against cardiac I/R injury by enhancing mitochondrial biogenesis. This beneficial effect of VNS on mitochondrial biogenesis is attributed to activation of the SIRT1/PGC-1α pathway through the ACh/mAChR axis. Therefore, this research offers fresh perspectives on the mechanisms underlying the cardioprotective effects of VNS.
期刊介绍:
This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities.
In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.