通过动态金属纳米颗粒形成原子层沉积TiO2:Pt薄膜的可调电学和光学特性

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Ramin Ghiyasi, Girish C. Tewari, Maarit Karppinen
{"title":"通过动态金属纳米颗粒形成原子层沉积TiO2:Pt薄膜的可调电学和光学特性","authors":"Ramin Ghiyasi,&nbsp;Girish C. Tewari,&nbsp;Maarit Karppinen","doi":"10.1002/admi.202500594","DOIUrl":null,"url":null,"abstract":"<p>Composite TiO2:Pt thin films deposited by atomic layer deposition (ALD) exhibit significant temperature‑dependent resistivity transitions, from insulating to semiconducting to metallic‑like conducting behavior, while remaining transparent to visible light and strongly absorbing ultraviolet (UV) radiation. The composite films are fabricated using a supercycle approach, and the morphological, electrical, and optical properties are systematically investigated for a series of films with the cycle ratio varying from 4TiO<sub>2</sub>:1Pt to 1TiO<sub>2</sub>:4Pt. The thus deposited thin films, specifically those with 2TiO<sub>2</sub>:1Pt, 1TiO<sub>2</sub>:1Pt, and 1TiO<sub>2</sub>:2Pt ratios, consist of metallic Pt nanoparticles embedded within the anatase-type TiO<sub>2</sub> matrix, in which the optical properties are primarily governed by the TiO<sub>2</sub> component, whereas the electrical behavior depends on the Pt particle size and density. Notably, films with a 2TiO<sub>2</sub>:1Pt ratio undergo morphological alterations due to the nucleation of Pt nanoparticles beginning at temperatures slightly above room temperature (≈340 K), resulting in alterations in the electrical resistivity. These findings highlight the potential of ALD-grown TiO<sub>2</sub>:Pt composite thin films for applications in transparent electronics, optoelectronics, and photocatalytic systems.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 17","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202500594","citationCount":"0","resultStr":"{\"title\":\"Tunable Electrical and Optical Properties in Atomic Layer Deposited TiO2:Pt Thin Films via Dynamic Metallic Nanoparticle Formation\",\"authors\":\"Ramin Ghiyasi,&nbsp;Girish C. Tewari,&nbsp;Maarit Karppinen\",\"doi\":\"10.1002/admi.202500594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Composite TiO2:Pt thin films deposited by atomic layer deposition (ALD) exhibit significant temperature‑dependent resistivity transitions, from insulating to semiconducting to metallic‑like conducting behavior, while remaining transparent to visible light and strongly absorbing ultraviolet (UV) radiation. The composite films are fabricated using a supercycle approach, and the morphological, electrical, and optical properties are systematically investigated for a series of films with the cycle ratio varying from 4TiO<sub>2</sub>:1Pt to 1TiO<sub>2</sub>:4Pt. The thus deposited thin films, specifically those with 2TiO<sub>2</sub>:1Pt, 1TiO<sub>2</sub>:1Pt, and 1TiO<sub>2</sub>:2Pt ratios, consist of metallic Pt nanoparticles embedded within the anatase-type TiO<sub>2</sub> matrix, in which the optical properties are primarily governed by the TiO<sub>2</sub> component, whereas the electrical behavior depends on the Pt particle size and density. Notably, films with a 2TiO<sub>2</sub>:1Pt ratio undergo morphological alterations due to the nucleation of Pt nanoparticles beginning at temperatures slightly above room temperature (≈340 K), resulting in alterations in the electrical resistivity. These findings highlight the potential of ALD-grown TiO<sub>2</sub>:Pt composite thin films for applications in transparent electronics, optoelectronics, and photocatalytic systems.</p>\",\"PeriodicalId\":115,\"journal\":{\"name\":\"Advanced Materials Interfaces\",\"volume\":\"12 17\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202500594\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/admi.202500594\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/admi.202500594","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过原子层沉积(ALD)沉积的复合TiO2:Pt薄膜表现出显著的温度依赖电阻率转变,从绝缘到半导体再到金属样导电行为,同时对可见光保持透明,并强烈吸收紫外线(UV)辐射。采用超循环法制备了复合薄膜,系统地研究了循环比从4TiO2:1Pt到1TiO2:4Pt的一系列薄膜的形态、电学和光学性质。由此沉积的薄膜,特别是具有2TiO2:1Pt, 1TiO2:1Pt和1TiO2:2Pt比例的薄膜,由金属Pt纳米颗粒嵌入锐钛矿型TiO2基体组成,其光学性质主要由TiO2组分决定,而电学行为取决于Pt颗粒的大小和密度。值得注意的是,在略高于室温(≈340 K)的温度下,Pt纳米粒子开始成核,导致2TiO2:1Pt比例的薄膜发生形态改变,从而导致电阻率的改变。这些发现突出了ald生长的TiO2:Pt复合薄膜在透明电子、光电子和光催化系统中的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tunable Electrical and Optical Properties in Atomic Layer Deposited TiO2:Pt Thin Films via Dynamic Metallic Nanoparticle Formation

Tunable Electrical and Optical Properties in Atomic Layer Deposited TiO2:Pt Thin Films via Dynamic Metallic Nanoparticle Formation

Tunable Electrical and Optical Properties in Atomic Layer Deposited TiO2:Pt Thin Films via Dynamic Metallic Nanoparticle Formation

Tunable Electrical and Optical Properties in Atomic Layer Deposited TiO2:Pt Thin Films via Dynamic Metallic Nanoparticle Formation

Tunable Electrical and Optical Properties in Atomic Layer Deposited TiO2:Pt Thin Films via Dynamic Metallic Nanoparticle Formation

Composite TiO2:Pt thin films deposited by atomic layer deposition (ALD) exhibit significant temperature‑dependent resistivity transitions, from insulating to semiconducting to metallic‑like conducting behavior, while remaining transparent to visible light and strongly absorbing ultraviolet (UV) radiation. The composite films are fabricated using a supercycle approach, and the morphological, electrical, and optical properties are systematically investigated for a series of films with the cycle ratio varying from 4TiO2:1Pt to 1TiO2:4Pt. The thus deposited thin films, specifically those with 2TiO2:1Pt, 1TiO2:1Pt, and 1TiO2:2Pt ratios, consist of metallic Pt nanoparticles embedded within the anatase-type TiO2 matrix, in which the optical properties are primarily governed by the TiO2 component, whereas the electrical behavior depends on the Pt particle size and density. Notably, films with a 2TiO2:1Pt ratio undergo morphological alterations due to the nucleation of Pt nanoparticles beginning at temperatures slightly above room temperature (≈340 K), resulting in alterations in the electrical resistivity. These findings highlight the potential of ALD-grown TiO2:Pt composite thin films for applications in transparent electronics, optoelectronics, and photocatalytic systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials Interfaces
Advanced Materials Interfaces CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.40
自引率
5.60%
发文量
1174
审稿时长
1.3 months
期刊介绍: Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018. The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface. Advanced Materials Interfaces covers all topics in interface-related research: Oil / water separation, Applications of nanostructured materials, 2D materials and heterostructures, Surfaces and interfaces in organic electronic devices, Catalysis and membranes, Self-assembly and nanopatterned surfaces, Composite and coating materials, Biointerfaces for technical and medical applications. Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信