TuNa-AI:一种设计可调纳米颗粒药物输送的混合核机器

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-09-11 DOI:10.1021/acsnano.5c09066
Zilu Zhang, , , Yan Xiang, , , Joe Laforet Jr., , , Ivan Spasojevic, , , Ping Fan, , , Ava Heffernan, , , Christine E. Eyler, , , Kris C. Wood, , , Zachary C. Hartman, , and , Daniel Reker*, 
{"title":"TuNa-AI:一种设计可调纳米颗粒药物输送的混合核机器","authors":"Zilu Zhang,&nbsp;, ,&nbsp;Yan Xiang,&nbsp;, ,&nbsp;Joe Laforet Jr.,&nbsp;, ,&nbsp;Ivan Spasojevic,&nbsp;, ,&nbsp;Ping Fan,&nbsp;, ,&nbsp;Ava Heffernan,&nbsp;, ,&nbsp;Christine E. Eyler,&nbsp;, ,&nbsp;Kris C. Wood,&nbsp;, ,&nbsp;Zachary C. Hartman,&nbsp;, and ,&nbsp;Daniel Reker*,&nbsp;","doi":"10.1021/acsnano.5c09066","DOIUrl":null,"url":null,"abstract":"<p >Artificial intelligence (AI) has the potential to transform nanoparticle development for drug delivery; however, existing strategies typically optimize either material selection or component ratios in isolation. To enable simultaneous optimization of both, we integrated an automated liquid handling platform with machine learning to systematically explore the nanoparticle formulation space. A data set comprising 1275 distinct formulations (spanning drug molecules, excipients, and synthesis molar ratios) was generated, resulting in a 42.9% increase in successful nanoparticle formation through composition optimization. We developed a bespoke hybrid kernel machine that couples molecular feature learning with relative compositional inference, enhancing the modeling of formulation outcomes across chemical spaces. This hybrid kernel significantly improved prediction performance across three kernel-based algorithms, with a support vector machine (SVM) achieving superior performance when using our kernel compared to standard kernels and outperforming all other machine learning architectures, including transformer-based deep neural networks. Using SVM-guided predictions, we successfully formulated the difficult-to-encapsulate venetoclax with optimized taurocholic acid ratios, yielding enhanced <i>in vitro</i> efficacy against Kasumi-1 leukemia cells. In a second case study, our AI-guided platform reduced excipient usage by 75% in a trametinib formulation while preserving the <i>in vitro</i> efficacy and <i>in vivo</i> pharmacokinetics relative to the standard formulation. Taken together, this study establishes a generalizable framework that combines robotic experimentation, kernel machine learning, and experimental validation to accelerate nanoparticle composition optimization for drug delivery.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 37","pages":"33288–33296"},"PeriodicalIF":16.0000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TuNa-AI: A Hybrid Kernel Machine To Design Tunable Nanoparticles for Drug Delivery\",\"authors\":\"Zilu Zhang,&nbsp;, ,&nbsp;Yan Xiang,&nbsp;, ,&nbsp;Joe Laforet Jr.,&nbsp;, ,&nbsp;Ivan Spasojevic,&nbsp;, ,&nbsp;Ping Fan,&nbsp;, ,&nbsp;Ava Heffernan,&nbsp;, ,&nbsp;Christine E. Eyler,&nbsp;, ,&nbsp;Kris C. Wood,&nbsp;, ,&nbsp;Zachary C. Hartman,&nbsp;, and ,&nbsp;Daniel Reker*,&nbsp;\",\"doi\":\"10.1021/acsnano.5c09066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Artificial intelligence (AI) has the potential to transform nanoparticle development for drug delivery; however, existing strategies typically optimize either material selection or component ratios in isolation. To enable simultaneous optimization of both, we integrated an automated liquid handling platform with machine learning to systematically explore the nanoparticle formulation space. A data set comprising 1275 distinct formulations (spanning drug molecules, excipients, and synthesis molar ratios) was generated, resulting in a 42.9% increase in successful nanoparticle formation through composition optimization. We developed a bespoke hybrid kernel machine that couples molecular feature learning with relative compositional inference, enhancing the modeling of formulation outcomes across chemical spaces. This hybrid kernel significantly improved prediction performance across three kernel-based algorithms, with a support vector machine (SVM) achieving superior performance when using our kernel compared to standard kernels and outperforming all other machine learning architectures, including transformer-based deep neural networks. Using SVM-guided predictions, we successfully formulated the difficult-to-encapsulate venetoclax with optimized taurocholic acid ratios, yielding enhanced <i>in vitro</i> efficacy against Kasumi-1 leukemia cells. In a second case study, our AI-guided platform reduced excipient usage by 75% in a trametinib formulation while preserving the <i>in vitro</i> efficacy and <i>in vivo</i> pharmacokinetics relative to the standard formulation. Taken together, this study establishes a generalizable framework that combines robotic experimentation, kernel machine learning, and experimental validation to accelerate nanoparticle composition optimization for drug delivery.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 37\",\"pages\":\"33288–33296\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c09066\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c09066","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)有可能改变用于药物输送的纳米颗粒的开发;然而,现有的策略通常是孤立地优化材料选择或成分比例。为了使两者同时优化,我们将自动化液体处理平台与机器学习集成在一起,系统地探索纳米颗粒配方空间。生成了包含1275种不同配方(跨越药物分子、赋形剂和合成摩尔比)的数据集,通过组合优化,成功形成纳米颗粒的几率增加了42.9%。我们开发了一种定制的混合核机器,将分子特征学习与相对成分推理结合起来,增强了跨化学空间的配方结果建模。这种混合核显著提高了三种基于核的算法的预测性能,与标准核相比,使用我们的核时,支持向量机(SVM)实现了卓越的性能,并且优于所有其他机器学习架构,包括基于变压器的深度神经网络。利用支持向量机指导的预测,我们成功地配制了难以包封的venetoclax,优化了牛磺胆酸比例,提高了体外对Kasumi-1白血病细胞的疗效。在第二个案例研究中,我们的人工智能引导平台将曲美替尼配方中的赋形剂使用量减少了75%,同时保持了相对于标准配方的体外功效和体内药代动力学。综上所述,本研究建立了一个可推广的框架,该框架结合了机器人实验、核心机器学习和实验验证,以加速药物递送的纳米颗粒组成优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

TuNa-AI: A Hybrid Kernel Machine To Design Tunable Nanoparticles for Drug Delivery

TuNa-AI: A Hybrid Kernel Machine To Design Tunable Nanoparticles for Drug Delivery

TuNa-AI: A Hybrid Kernel Machine To Design Tunable Nanoparticles for Drug Delivery

Artificial intelligence (AI) has the potential to transform nanoparticle development for drug delivery; however, existing strategies typically optimize either material selection or component ratios in isolation. To enable simultaneous optimization of both, we integrated an automated liquid handling platform with machine learning to systematically explore the nanoparticle formulation space. A data set comprising 1275 distinct formulations (spanning drug molecules, excipients, and synthesis molar ratios) was generated, resulting in a 42.9% increase in successful nanoparticle formation through composition optimization. We developed a bespoke hybrid kernel machine that couples molecular feature learning with relative compositional inference, enhancing the modeling of formulation outcomes across chemical spaces. This hybrid kernel significantly improved prediction performance across three kernel-based algorithms, with a support vector machine (SVM) achieving superior performance when using our kernel compared to standard kernels and outperforming all other machine learning architectures, including transformer-based deep neural networks. Using SVM-guided predictions, we successfully formulated the difficult-to-encapsulate venetoclax with optimized taurocholic acid ratios, yielding enhanced in vitro efficacy against Kasumi-1 leukemia cells. In a second case study, our AI-guided platform reduced excipient usage by 75% in a trametinib formulation while preserving the in vitro efficacy and in vivo pharmacokinetics relative to the standard formulation. Taken together, this study establishes a generalizable framework that combines robotic experimentation, kernel machine learning, and experimental validation to accelerate nanoparticle composition optimization for drug delivery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信