通过协调呼吸、电子流和捕获模块改变汞的生物转化命运。

IF 11.3 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Yu-Ting Wang, , , Zheng-Hao Li, , , Sheng-Lan Gong, , , Jun Jiang, , , Yu-Lu Jiang, , , Yong Guan, , , Zhao Wu, , , Gang Liu, , , Yang-Chao Tian, , and , Li-Jiao Tian*, 
{"title":"通过协调呼吸、电子流和捕获模块改变汞的生物转化命运。","authors":"Yu-Ting Wang,&nbsp;, ,&nbsp;Zheng-Hao Li,&nbsp;, ,&nbsp;Sheng-Lan Gong,&nbsp;, ,&nbsp;Jun Jiang,&nbsp;, ,&nbsp;Yu-Lu Jiang,&nbsp;, ,&nbsp;Yong Guan,&nbsp;, ,&nbsp;Zhao Wu,&nbsp;, ,&nbsp;Gang Liu,&nbsp;, ,&nbsp;Yang-Chao Tian,&nbsp;, and ,&nbsp;Li-Jiao Tian*,&nbsp;","doi":"10.1021/acs.est.5c08193","DOIUrl":null,"url":null,"abstract":"<p >Dissimilatory metal-reducing bacteria (DMRB) have the talent to convert mercury ions (Hg<sup>2+</sup>) into elemental mercury (Hg<sup>0</sup>). Here, we shed light on the directed biomineralization of Hg<sup>2+</sup> into mercury selenide (HgSe), which is a promising environmental sink for Hg with minimal ecological risk. This process displays a controlled subcellular localization, improved efficiency, and redistribution of Hg species through the coordination of three modules, including reinforced respiratory, reconfigured electron flow, and anchored trap in <i><i>Shewanella oneidensis</i></i> MR-1, a model DMRB. By supplementing redox substance, we first construct a golden Hg<sup>2+</sup> capture system, that is <i><i>S. oneidensis</i></i>-Se<sup>0</sup> hybrid. Redox substance triggers a transition from intracellular selenite reduction to extracellular biosynthesis of Se<sup>0</sup> nanoparticles (NPs), resulting in a notably increased yield of Se<sup>0</sup> NPs. Importantly, this hybrid alters the biotransformation fate of Hg<sup>2+</sup>, enabling the efficient formation of less toxic HgSe nanoparticles and decreasing the percentage of volatile Hg<sup>0</sup>. Such a biological decontamination process relies on sufficient bioelectron donation, unimpeded electron channels, and highly effective Hg<sup>2+</sup> traps, all of which can be initiated, directed, and coordinated by the redox-active compound. The resulting <i><i>S. oneidensis</i></i>-Se<sup>0</sup> hybrid is feasible to scale up for the depuration of Hg<sup>2+</sup> in artificial wastewater by using a membrane bioreactor (MBR). Our work provides an integrated strategy for designing biological capture to immobilize Hg<sup>2+</sup>, offering fundamental guidance to improve biotechnologies in environmental remediation and resource recovery.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"59 37","pages":"19921–19931"},"PeriodicalIF":11.3000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Altering the Biotransformation Fate of Mercury by Coordinating Respiratory, Electron Flow, and Trapping Module\",\"authors\":\"Yu-Ting Wang,&nbsp;, ,&nbsp;Zheng-Hao Li,&nbsp;, ,&nbsp;Sheng-Lan Gong,&nbsp;, ,&nbsp;Jun Jiang,&nbsp;, ,&nbsp;Yu-Lu Jiang,&nbsp;, ,&nbsp;Yong Guan,&nbsp;, ,&nbsp;Zhao Wu,&nbsp;, ,&nbsp;Gang Liu,&nbsp;, ,&nbsp;Yang-Chao Tian,&nbsp;, and ,&nbsp;Li-Jiao Tian*,&nbsp;\",\"doi\":\"10.1021/acs.est.5c08193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Dissimilatory metal-reducing bacteria (DMRB) have the talent to convert mercury ions (Hg<sup>2+</sup>) into elemental mercury (Hg<sup>0</sup>). Here, we shed light on the directed biomineralization of Hg<sup>2+</sup> into mercury selenide (HgSe), which is a promising environmental sink for Hg with minimal ecological risk. This process displays a controlled subcellular localization, improved efficiency, and redistribution of Hg species through the coordination of three modules, including reinforced respiratory, reconfigured electron flow, and anchored trap in <i><i>Shewanella oneidensis</i></i> MR-1, a model DMRB. By supplementing redox substance, we first construct a golden Hg<sup>2+</sup> capture system, that is <i><i>S. oneidensis</i></i>-Se<sup>0</sup> hybrid. Redox substance triggers a transition from intracellular selenite reduction to extracellular biosynthesis of Se<sup>0</sup> nanoparticles (NPs), resulting in a notably increased yield of Se<sup>0</sup> NPs. Importantly, this hybrid alters the biotransformation fate of Hg<sup>2+</sup>, enabling the efficient formation of less toxic HgSe nanoparticles and decreasing the percentage of volatile Hg<sup>0</sup>. Such a biological decontamination process relies on sufficient bioelectron donation, unimpeded electron channels, and highly effective Hg<sup>2+</sup> traps, all of which can be initiated, directed, and coordinated by the redox-active compound. The resulting <i><i>S. oneidensis</i></i>-Se<sup>0</sup> hybrid is feasible to scale up for the depuration of Hg<sup>2+</sup> in artificial wastewater by using a membrane bioreactor (MBR). Our work provides an integrated strategy for designing biological capture to immobilize Hg<sup>2+</sup>, offering fundamental guidance to improve biotechnologies in environmental remediation and resource recovery.</p>\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":\"59 37\",\"pages\":\"19921–19931\"},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.est.5c08193\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.est.5c08193","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

异化金属还原细菌(DMRB)具有将汞离子(Hg2+)转化为单质汞(Hg0)的才能。在这里,我们阐明了Hg2+定向生物矿化成硒化汞(HgSe),这是一种有前途的环境汞汇,生态风险最小。该过程通过加强呼吸、重新配置电子流和锚定陷阱三个模块的协调,显示出控制的亚细胞定位、效率的提高和汞物种的再分配。通过补充氧化还原物质,我们首先构建了一个金色的Hg2+捕获体系,即S. oneidensis-Se0杂交体系。氧化还原物质触发了从细胞内亚硒酸盐还原到细胞外Se0纳米颗粒(NPs)生物合成的转变,导致Se0纳米颗粒的产量显著提高。重要的是,这种杂化改变了Hg2+的生物转化命运,使毒性更低的HgSe纳米粒子能够有效形成,并降低了挥发性Hg0的百分比。这种生物去污过程依赖于足够的生物电子捐赠、畅通的电子通道和高效的Hg2+陷阱,所有这些都可以由氧化还原活性化合物发起、指导和协调。结果表明,利用膜生物反应器(MBR)对人工废水中的Hg2+进行净化是可行的。本研究为设计生物捕获固定Hg2+提供了一种综合策略,为提高生物技术在环境修复和资源恢复中的应用提供了基础指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Altering the Biotransformation Fate of Mercury by Coordinating Respiratory, Electron Flow, and Trapping Module

Altering the Biotransformation Fate of Mercury by Coordinating Respiratory, Electron Flow, and Trapping Module

Dissimilatory metal-reducing bacteria (DMRB) have the talent to convert mercury ions (Hg2+) into elemental mercury (Hg0). Here, we shed light on the directed biomineralization of Hg2+ into mercury selenide (HgSe), which is a promising environmental sink for Hg with minimal ecological risk. This process displays a controlled subcellular localization, improved efficiency, and redistribution of Hg species through the coordination of three modules, including reinforced respiratory, reconfigured electron flow, and anchored trap in Shewanella oneidensis MR-1, a model DMRB. By supplementing redox substance, we first construct a golden Hg2+ capture system, that is S. oneidensis-Se0 hybrid. Redox substance triggers a transition from intracellular selenite reduction to extracellular biosynthesis of Se0 nanoparticles (NPs), resulting in a notably increased yield of Se0 NPs. Importantly, this hybrid alters the biotransformation fate of Hg2+, enabling the efficient formation of less toxic HgSe nanoparticles and decreasing the percentage of volatile Hg0. Such a biological decontamination process relies on sufficient bioelectron donation, unimpeded electron channels, and highly effective Hg2+ traps, all of which can be initiated, directed, and coordinated by the redox-active compound. The resulting S. oneidensis-Se0 hybrid is feasible to scale up for the depuration of Hg2+ in artificial wastewater by using a membrane bioreactor (MBR). Our work provides an integrated strategy for designing biological capture to immobilize Hg2+, offering fundamental guidance to improve biotechnologies in environmental remediation and resource recovery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信