David Radice, Rossella Gamba, Hengrui Zhu and Alireza Rashti
{"title":"双黑洞合并GW150914的AthenaK模拟","authors":"David Radice, Rossella Gamba, Hengrui Zhu and Alireza Rashti","doi":"10.1088/1361-6382/adfffa","DOIUrl":null,"url":null,"abstract":"We present new binary black hole simulations targeted to GW150914 using the GPU-accelerated code AthenaK. We compute the properties of the final remnant with the isolated horizon formalism and obtain gravitational-waveforms at future null infinity via Cauchy characteristic extraction. We compare our results with those obtained by the Simulating eXtreme Spacetimes (SXS) and Rochester Institute of Technology (RIT) groups, targeted to the same event. We find excellent agreement with the SXS and RIT results in the remnant mass, spin, and recoil velocity. For the dominant mode of the gravitational-wave signal we find maximum dephasing of and amplitude difference of . We use our newly computed waveform to re-analyze the GW150914 data and find posteriors for chirp mass, luminosity distance, and inclination that are broadely consistent with those obtained using semi-analytic waveform models. This work demonstrates the viability of AthenaK for many-orbits binary black hole merger simulations. A step-by-step tutorial, including all necessary input files and analysis scripts to reproduce our results, is available on GitHub.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"195 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AthenaK simulations of the binary black hole merger GW150914\",\"authors\":\"David Radice, Rossella Gamba, Hengrui Zhu and Alireza Rashti\",\"doi\":\"10.1088/1361-6382/adfffa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present new binary black hole simulations targeted to GW150914 using the GPU-accelerated code AthenaK. We compute the properties of the final remnant with the isolated horizon formalism and obtain gravitational-waveforms at future null infinity via Cauchy characteristic extraction. We compare our results with those obtained by the Simulating eXtreme Spacetimes (SXS) and Rochester Institute of Technology (RIT) groups, targeted to the same event. We find excellent agreement with the SXS and RIT results in the remnant mass, spin, and recoil velocity. For the dominant mode of the gravitational-wave signal we find maximum dephasing of and amplitude difference of . We use our newly computed waveform to re-analyze the GW150914 data and find posteriors for chirp mass, luminosity distance, and inclination that are broadely consistent with those obtained using semi-analytic waveform models. This work demonstrates the viability of AthenaK for many-orbits binary black hole merger simulations. A step-by-step tutorial, including all necessary input files and analysis scripts to reproduce our results, is available on GitHub.\",\"PeriodicalId\":10282,\"journal\":{\"name\":\"Classical and Quantum Gravity\",\"volume\":\"195 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Classical and Quantum Gravity\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6382/adfffa\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/adfffa","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
AthenaK simulations of the binary black hole merger GW150914
We present new binary black hole simulations targeted to GW150914 using the GPU-accelerated code AthenaK. We compute the properties of the final remnant with the isolated horizon formalism and obtain gravitational-waveforms at future null infinity via Cauchy characteristic extraction. We compare our results with those obtained by the Simulating eXtreme Spacetimes (SXS) and Rochester Institute of Technology (RIT) groups, targeted to the same event. We find excellent agreement with the SXS and RIT results in the remnant mass, spin, and recoil velocity. For the dominant mode of the gravitational-wave signal we find maximum dephasing of and amplitude difference of . We use our newly computed waveform to re-analyze the GW150914 data and find posteriors for chirp mass, luminosity distance, and inclination that are broadely consistent with those obtained using semi-analytic waveform models. This work demonstrates the viability of AthenaK for many-orbits binary black hole merger simulations. A step-by-step tutorial, including all necessary input files and analysis scripts to reproduce our results, is available on GitHub.
期刊介绍:
Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.