Samarth Hegde, Bruno Giotti, Brian Y. Soong, Laszlo Halasz, Jessica Le Berichel, Maximilian M. Schaefer, Benoit Kloeckner, Raphaël Mattiuz, Matthew D. Park, Assaf Magen, Adam Marks, Meriem Belabed, Pauline Hamon, Theodore Chin, Leanna Troncoso, Juliana J. Lee, Kaili Fan, Dughan Ahimovic, Michael J. Bale, Kai Nie, Grace Chung, Darwin D’souza, Krista Angeliadis, Seunghee Kim-Schulze, Raja M. Flores, Andrew J. Kaufman, Florent Ginhoux, Jason D. Buenrostro, Steven Z. Josefowicz, Alexander M. Tsankov, Thomas U. Marron, Sai Ma, Brian D. Brown, Miriam Merad
{"title":"骨髓祖细胞失调刺激肿瘤中的免疫抑制巨噬细胞","authors":"Samarth Hegde, Bruno Giotti, Brian Y. Soong, Laszlo Halasz, Jessica Le Berichel, Maximilian M. Schaefer, Benoit Kloeckner, Raphaël Mattiuz, Matthew D. Park, Assaf Magen, Adam Marks, Meriem Belabed, Pauline Hamon, Theodore Chin, Leanna Troncoso, Juliana J. Lee, Kaili Fan, Dughan Ahimovic, Michael J. Bale, Kai Nie, Grace Chung, Darwin D’souza, Krista Angeliadis, Seunghee Kim-Schulze, Raja M. Flores, Andrew J. Kaufman, Florent Ginhoux, Jason D. Buenrostro, Steven Z. Josefowicz, Alexander M. Tsankov, Thomas U. Marron, Sai Ma, Brian D. Brown, Miriam Merad","doi":"10.1038/s41586-025-09493-y","DOIUrl":null,"url":null,"abstract":"<p>Monocyte-derived macrophages (mo-macs) often drive immunosuppression in the tumour microenvironment (TME)<sup>1</sup> and tumour-enhanced myelopoiesis in the bone marrow fuels these populations<sup>2</sup>. Here we performed paired transcriptome and chromatin accessibility analysis over the continuum of myeloid progenitors, circulating monocytes and tumour-infiltrating mo-macs in mice and in patients with lung cancer to identify myeloid progenitor programs that fuel pro-tumorigenic mo-macs. We show that lung tumours prime accessibility for <i>Nfe2l2</i> (NRF2) in bone marrow myeloid progenitors as a cytoprotective response to oxidative stress, enhancing myelopoiesis while dampening interferon response and promoting immunosuppression. NRF2 activity is amplified during monocyte differentiation into mo-macs in the TME to regulate stress and drive immunosuppressive phenotype. NRF2 genetic deletion and pharmacological inhibition significantly reduced the survival and immunosuppression of mo-macs in the TME, restoring natural killer and T cell anti-tumour immunity and enhancing checkpoint blockade efficacy. Our findings identify a targetable epigenetic node of myeloid progenitor dysregulation that sustains immunoregulatory mo-macs in the lung TME and highlight the potential of early interventions to reprogram macrophage fate for improved immunotherapy outcomes.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"17 1","pages":""},"PeriodicalIF":48.5000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Myeloid progenitor dysregulation fuels immunosuppressive macrophages in tumours\",\"authors\":\"Samarth Hegde, Bruno Giotti, Brian Y. Soong, Laszlo Halasz, Jessica Le Berichel, Maximilian M. Schaefer, Benoit Kloeckner, Raphaël Mattiuz, Matthew D. Park, Assaf Magen, Adam Marks, Meriem Belabed, Pauline Hamon, Theodore Chin, Leanna Troncoso, Juliana J. Lee, Kaili Fan, Dughan Ahimovic, Michael J. Bale, Kai Nie, Grace Chung, Darwin D’souza, Krista Angeliadis, Seunghee Kim-Schulze, Raja M. Flores, Andrew J. Kaufman, Florent Ginhoux, Jason D. Buenrostro, Steven Z. Josefowicz, Alexander M. Tsankov, Thomas U. Marron, Sai Ma, Brian D. Brown, Miriam Merad\",\"doi\":\"10.1038/s41586-025-09493-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Monocyte-derived macrophages (mo-macs) often drive immunosuppression in the tumour microenvironment (TME)<sup>1</sup> and tumour-enhanced myelopoiesis in the bone marrow fuels these populations<sup>2</sup>. Here we performed paired transcriptome and chromatin accessibility analysis over the continuum of myeloid progenitors, circulating monocytes and tumour-infiltrating mo-macs in mice and in patients with lung cancer to identify myeloid progenitor programs that fuel pro-tumorigenic mo-macs. We show that lung tumours prime accessibility for <i>Nfe2l2</i> (NRF2) in bone marrow myeloid progenitors as a cytoprotective response to oxidative stress, enhancing myelopoiesis while dampening interferon response and promoting immunosuppression. NRF2 activity is amplified during monocyte differentiation into mo-macs in the TME to regulate stress and drive immunosuppressive phenotype. NRF2 genetic deletion and pharmacological inhibition significantly reduced the survival and immunosuppression of mo-macs in the TME, restoring natural killer and T cell anti-tumour immunity and enhancing checkpoint blockade efficacy. Our findings identify a targetable epigenetic node of myeloid progenitor dysregulation that sustains immunoregulatory mo-macs in the lung TME and highlight the potential of early interventions to reprogram macrophage fate for improved immunotherapy outcomes.</p>\",\"PeriodicalId\":18787,\"journal\":{\"name\":\"Nature\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":48.5000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41586-025-09493-y\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-025-09493-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Myeloid progenitor dysregulation fuels immunosuppressive macrophages in tumours
Monocyte-derived macrophages (mo-macs) often drive immunosuppression in the tumour microenvironment (TME)1 and tumour-enhanced myelopoiesis in the bone marrow fuels these populations2. Here we performed paired transcriptome and chromatin accessibility analysis over the continuum of myeloid progenitors, circulating monocytes and tumour-infiltrating mo-macs in mice and in patients with lung cancer to identify myeloid progenitor programs that fuel pro-tumorigenic mo-macs. We show that lung tumours prime accessibility for Nfe2l2 (NRF2) in bone marrow myeloid progenitors as a cytoprotective response to oxidative stress, enhancing myelopoiesis while dampening interferon response and promoting immunosuppression. NRF2 activity is amplified during monocyte differentiation into mo-macs in the TME to regulate stress and drive immunosuppressive phenotype. NRF2 genetic deletion and pharmacological inhibition significantly reduced the survival and immunosuppression of mo-macs in the TME, restoring natural killer and T cell anti-tumour immunity and enhancing checkpoint blockade efficacy. Our findings identify a targetable epigenetic node of myeloid progenitor dysregulation that sustains immunoregulatory mo-macs in the lung TME and highlight the potential of early interventions to reprogram macrophage fate for improved immunotherapy outcomes.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.