Peng Ran, Lurong Yang, Juan Hui, Yirong Su, Zeng Chen, Haiming Zhu, Cuifang Kuang, Xu Liu, Yang (Michael) Yang
{"title":"基于双功能近红外闪烁体的单次x射线和近红外双模融合成像","authors":"Peng Ran, Lurong Yang, Juan Hui, Yirong Su, Zeng Chen, Haiming Zhu, Cuifang Kuang, Xu Liu, Yang (Michael) Yang","doi":"10.1038/s41377-025-01898-8","DOIUrl":null,"url":null,"abstract":"<p>X-ray and near-infrared (NIR) imaging are two well-established noninvasive imaging techniques, whose fusion often delineates a more complementary view of the subject. In this study, we introduce an innovative dual-mode imaging approach using a NIR scintillator, functioning both as a conventional scintillator for X-ray imaging and as a light source for NIR imaging. Our method facilitates the concurrent acquisition and registration of X-ray and NIR images in a single X-ray shot, eliminating the need for additional hardware beyond that of a standard X-ray imaging system. We have successfully synthesized an ytterbium-doped perovskite NIR scintillator using a water-based scalable process, which exhibits a pronounced scintillation emission at 980 nm, suggesting the presence of a potential quantum cutting effect. The experimental results underscore the enhanced capabilities in visualizing features typically elusive in standard X-ray images, such as the vascular network in a human palm. Besides, our method can effectively separate the X-ray and NIR signals, which is a common issue with recently developed multi-band detectors that suffer from superimposed electrical signals. This separation is achieved by designing a NIR-Visible dual-band scintillator that channels the X-ray and NIR characteristics into distinct emission pathways, thus avoiding any potential interference between the two imaging modalities. This study presents a novel strategy for harnessing the synergistic information from X-ray and NIR photons, enabled by the simple yet effective design of a NIR X-ray scintillator. This advancement might hold the potential to broaden the application scope of conventional X-ray imaging, enhancing its diagnostic and analytical capabilities.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"33 1","pages":""},"PeriodicalIF":23.4000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-shot X-ray and near-infrared (NIR) dual-mode fusion imaging based on bifunctional NIR scintillators\",\"authors\":\"Peng Ran, Lurong Yang, Juan Hui, Yirong Su, Zeng Chen, Haiming Zhu, Cuifang Kuang, Xu Liu, Yang (Michael) Yang\",\"doi\":\"10.1038/s41377-025-01898-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>X-ray and near-infrared (NIR) imaging are two well-established noninvasive imaging techniques, whose fusion often delineates a more complementary view of the subject. In this study, we introduce an innovative dual-mode imaging approach using a NIR scintillator, functioning both as a conventional scintillator for X-ray imaging and as a light source for NIR imaging. Our method facilitates the concurrent acquisition and registration of X-ray and NIR images in a single X-ray shot, eliminating the need for additional hardware beyond that of a standard X-ray imaging system. We have successfully synthesized an ytterbium-doped perovskite NIR scintillator using a water-based scalable process, which exhibits a pronounced scintillation emission at 980 nm, suggesting the presence of a potential quantum cutting effect. The experimental results underscore the enhanced capabilities in visualizing features typically elusive in standard X-ray images, such as the vascular network in a human palm. Besides, our method can effectively separate the X-ray and NIR signals, which is a common issue with recently developed multi-band detectors that suffer from superimposed electrical signals. This separation is achieved by designing a NIR-Visible dual-band scintillator that channels the X-ray and NIR characteristics into distinct emission pathways, thus avoiding any potential interference between the two imaging modalities. This study presents a novel strategy for harnessing the synergistic information from X-ray and NIR photons, enabled by the simple yet effective design of a NIR X-ray scintillator. This advancement might hold the potential to broaden the application scope of conventional X-ray imaging, enhancing its diagnostic and analytical capabilities.</p>\",\"PeriodicalId\":18069,\"journal\":{\"name\":\"Light-Science & Applications\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":23.4000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Light-Science & Applications\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1038/s41377-025-01898-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01898-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Single-shot X-ray and near-infrared (NIR) dual-mode fusion imaging based on bifunctional NIR scintillators
X-ray and near-infrared (NIR) imaging are two well-established noninvasive imaging techniques, whose fusion often delineates a more complementary view of the subject. In this study, we introduce an innovative dual-mode imaging approach using a NIR scintillator, functioning both as a conventional scintillator for X-ray imaging and as a light source for NIR imaging. Our method facilitates the concurrent acquisition and registration of X-ray and NIR images in a single X-ray shot, eliminating the need for additional hardware beyond that of a standard X-ray imaging system. We have successfully synthesized an ytterbium-doped perovskite NIR scintillator using a water-based scalable process, which exhibits a pronounced scintillation emission at 980 nm, suggesting the presence of a potential quantum cutting effect. The experimental results underscore the enhanced capabilities in visualizing features typically elusive in standard X-ray images, such as the vascular network in a human palm. Besides, our method can effectively separate the X-ray and NIR signals, which is a common issue with recently developed multi-band detectors that suffer from superimposed electrical signals. This separation is achieved by designing a NIR-Visible dual-band scintillator that channels the X-ray and NIR characteristics into distinct emission pathways, thus avoiding any potential interference between the two imaging modalities. This study presents a novel strategy for harnessing the synergistic information from X-ray and NIR photons, enabled by the simple yet effective design of a NIR X-ray scintillator. This advancement might hold the potential to broaden the application scope of conventional X-ray imaging, enhancing its diagnostic and analytical capabilities.