La0.8Sr0.2CoO3纳米粒子在碱性电解中增强点阵氧氧化的超粒子组装。

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mohaned Hammad*, , , Blaž Toplak, , , Adil Amin, , , Mena-Alexander Kräenbring, , , Ahammed Suhail Odungat, , , Mohammed-Ali Sheikh, , , Adarsh Jain, , , Amin S. Amin, , , Ralf Meckenstock, , , Thai Binh Nguyen, , , Khuzaifa Yahuza Muhammad, , , Abdallah Hamdan, , , Steven Angel, , , Michael Farle, , , Ulf-Peter Apfel, , , Hartmut Wiggers, , and , Doris Segets*, 
{"title":"La0.8Sr0.2CoO3纳米粒子在碱性电解中增强点阵氧氧化的超粒子组装。","authors":"Mohaned Hammad*,&nbsp;, ,&nbsp;Blaž Toplak,&nbsp;, ,&nbsp;Adil Amin,&nbsp;, ,&nbsp;Mena-Alexander Kräenbring,&nbsp;, ,&nbsp;Ahammed Suhail Odungat,&nbsp;, ,&nbsp;Mohammed-Ali Sheikh,&nbsp;, ,&nbsp;Adarsh Jain,&nbsp;, ,&nbsp;Amin S. Amin,&nbsp;, ,&nbsp;Ralf Meckenstock,&nbsp;, ,&nbsp;Thai Binh Nguyen,&nbsp;, ,&nbsp;Khuzaifa Yahuza Muhammad,&nbsp;, ,&nbsp;Abdallah Hamdan,&nbsp;, ,&nbsp;Steven Angel,&nbsp;, ,&nbsp;Michael Farle,&nbsp;, ,&nbsp;Ulf-Peter Apfel,&nbsp;, ,&nbsp;Hartmut Wiggers,&nbsp;, and ,&nbsp;Doris Segets*,&nbsp;","doi":"10.1021/acsami.5c11289","DOIUrl":null,"url":null,"abstract":"<p >Developing effective non-noble metal electrocatalysts for the oxygen evolution reaction (OER) remains challenging due to limited active sites, poor electronic conductivity, and high overpotentials associated with the conventional adsorbate evolution mechanism (AEM). To address these limitations, a one-step spray drying method is employed to assemble high-surface-area La<sub>0.8</sub>Sr<sub>0.2</sub>CoO<sub>3</sub> nanoparticles (LSCO-NP) into hierarchical supraparticles with ≈65% porosity and interconnected meso-/macropore networks. This architecture not only accelerates ion diffusion and interparticle electron transfer but also induces a mechanistic switch from the AEM to the lattice oxygen oxidation mechanism (LOM). La<sub>0.8</sub>Sr<sub>0.2</sub>CoO<sub>3</sub> supraparticles (LSCO-SP) demonstrate significantly enhanced OER performance, requiring ∼300 mV lower overpotential at 100 mA cm<sup>–2</sup> after 1 h compared to LSCO-NP. Moreover, LSCO-SP exhibit faster catalytic kinetics, evidenced by a smaller Tafel slope of 76.2 mV dec<sup>–1</sup> versus 82.5 mV dec<sup>–1</sup> and lower charge transfer resistance of 1.11 Ω versus 1.31 Ω for LSCO-NP. Structural analyses confirmed that the LSCO-SP maintained their integrity under OER conditions. Furthermore, post-mortem X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR) analyses reveal an increased formation of oxygen vacancies (O<sub>vac</sub>) in LSCO-SP, confirming that the supraparticle design tunes the lattice oxygen-mediated mechanism–oxygen vacancy site mechanism (LOM–OVSM), enhancing OER performance. The hierarchical structure of LSCO-SP highlights their potential as a novel building block for catalyst layers in renewable energy applications.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 38","pages":"53413–53426"},"PeriodicalIF":8.2000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supraparticle Assembly of La0.8Sr0.2CoO3 Nanoparticles for Enhanced Lattice Oxygen Oxidation in Alkaline Electrolysis\",\"authors\":\"Mohaned Hammad*,&nbsp;, ,&nbsp;Blaž Toplak,&nbsp;, ,&nbsp;Adil Amin,&nbsp;, ,&nbsp;Mena-Alexander Kräenbring,&nbsp;, ,&nbsp;Ahammed Suhail Odungat,&nbsp;, ,&nbsp;Mohammed-Ali Sheikh,&nbsp;, ,&nbsp;Adarsh Jain,&nbsp;, ,&nbsp;Amin S. Amin,&nbsp;, ,&nbsp;Ralf Meckenstock,&nbsp;, ,&nbsp;Thai Binh Nguyen,&nbsp;, ,&nbsp;Khuzaifa Yahuza Muhammad,&nbsp;, ,&nbsp;Abdallah Hamdan,&nbsp;, ,&nbsp;Steven Angel,&nbsp;, ,&nbsp;Michael Farle,&nbsp;, ,&nbsp;Ulf-Peter Apfel,&nbsp;, ,&nbsp;Hartmut Wiggers,&nbsp;, and ,&nbsp;Doris Segets*,&nbsp;\",\"doi\":\"10.1021/acsami.5c11289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Developing effective non-noble metal electrocatalysts for the oxygen evolution reaction (OER) remains challenging due to limited active sites, poor electronic conductivity, and high overpotentials associated with the conventional adsorbate evolution mechanism (AEM). To address these limitations, a one-step spray drying method is employed to assemble high-surface-area La<sub>0.8</sub>Sr<sub>0.2</sub>CoO<sub>3</sub> nanoparticles (LSCO-NP) into hierarchical supraparticles with ≈65% porosity and interconnected meso-/macropore networks. This architecture not only accelerates ion diffusion and interparticle electron transfer but also induces a mechanistic switch from the AEM to the lattice oxygen oxidation mechanism (LOM). La<sub>0.8</sub>Sr<sub>0.2</sub>CoO<sub>3</sub> supraparticles (LSCO-SP) demonstrate significantly enhanced OER performance, requiring ∼300 mV lower overpotential at 100 mA cm<sup>–2</sup> after 1 h compared to LSCO-NP. Moreover, LSCO-SP exhibit faster catalytic kinetics, evidenced by a smaller Tafel slope of 76.2 mV dec<sup>–1</sup> versus 82.5 mV dec<sup>–1</sup> and lower charge transfer resistance of 1.11 Ω versus 1.31 Ω for LSCO-NP. Structural analyses confirmed that the LSCO-SP maintained their integrity under OER conditions. Furthermore, post-mortem X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR) analyses reveal an increased formation of oxygen vacancies (O<sub>vac</sub>) in LSCO-SP, confirming that the supraparticle design tunes the lattice oxygen-mediated mechanism–oxygen vacancy site mechanism (LOM–OVSM), enhancing OER performance. The hierarchical structure of LSCO-SP highlights their potential as a novel building block for catalyst layers in renewable energy applications.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 38\",\"pages\":\"53413–53426\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.5c11289\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c11289","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于活性位点有限、电子导电性差以及与传统吸附质演化机制(AEM)相关的高过电位,开发用于析氧反应(OER)的有效非贵金属电催化剂仍然具有挑战性。为了解决这些限制,采用一步喷雾干燥方法将高表面积La0.8Sr0.2CoO3纳米粒子(LSCO-NP)组装成具有≈65%孔隙率和相互连接的介孔/大孔网络的分层超粒子。这种结构不仅加速了离子扩散和粒子间电子转移,而且诱导了从AEM到晶格氧氧化机制(LOM)的机制转换。La0.8Sr0.2CoO3超粒子(LSCO-SP)表现出显著增强的OER性能,与LSCO-NP相比,1小时后在100 mA cm-2下的过电位需要降低~ 300 mV。此外,LSCO-SP表现出更快的催化动力学,其Tafel斜率为76.2 mV dec1,而LSCO-NP的Tafel斜率为82.5 mV dec1,电荷转移电阻为1.11 Ω,而LSCO-NP为1.31 Ω。结构分析证实LSCO-SP在OER条件下保持完整性。此外,x射线光电子能谱(XPS)和电子顺磁共振(EPR)分析显示,LSCO-SP中氧空位(Ovac)的形成增加,证实了超粒子设计调节了晶格氧介导机制-氧空位位点机制(LOM-OVSM),提高了OER性能。LSCO-SP的分层结构突出了它们作为可再生能源应用中催化剂层的新型构建块的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Supraparticle Assembly of La0.8Sr0.2CoO3 Nanoparticles for Enhanced Lattice Oxygen Oxidation in Alkaline Electrolysis

Supraparticle Assembly of La0.8Sr0.2CoO3 Nanoparticles for Enhanced Lattice Oxygen Oxidation in Alkaline Electrolysis

Developing effective non-noble metal electrocatalysts for the oxygen evolution reaction (OER) remains challenging due to limited active sites, poor electronic conductivity, and high overpotentials associated with the conventional adsorbate evolution mechanism (AEM). To address these limitations, a one-step spray drying method is employed to assemble high-surface-area La0.8Sr0.2CoO3 nanoparticles (LSCO-NP) into hierarchical supraparticles with ≈65% porosity and interconnected meso-/macropore networks. This architecture not only accelerates ion diffusion and interparticle electron transfer but also induces a mechanistic switch from the AEM to the lattice oxygen oxidation mechanism (LOM). La0.8Sr0.2CoO3 supraparticles (LSCO-SP) demonstrate significantly enhanced OER performance, requiring ∼300 mV lower overpotential at 100 mA cm–2 after 1 h compared to LSCO-NP. Moreover, LSCO-SP exhibit faster catalytic kinetics, evidenced by a smaller Tafel slope of 76.2 mV dec–1 versus 82.5 mV dec–1 and lower charge transfer resistance of 1.11 Ω versus 1.31 Ω for LSCO-NP. Structural analyses confirmed that the LSCO-SP maintained their integrity under OER conditions. Furthermore, post-mortem X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR) analyses reveal an increased formation of oxygen vacancies (Ovac) in LSCO-SP, confirming that the supraparticle design tunes the lattice oxygen-mediated mechanism–oxygen vacancy site mechanism (LOM–OVSM), enhancing OER performance. The hierarchical structure of LSCO-SP highlights their potential as a novel building block for catalyst layers in renewable energy applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信