量化糖尿病眼筛查的障碍:加州大学的两中心研究。

IF 16.6
Diabetes care Pub Date : 2025-09-09 DOI:10.2337/dc25-0951
Aryan Ayati, Shadera Azzam, Stella Ko, Cobi Ben-David, Michelle Wang, Nicole Bonine, David Tabano, Nina Malik, Frank Brodie, Mitul C Mehta, Vivek A Rudrapatna
{"title":"量化糖尿病眼筛查的障碍:加州大学的两中心研究。","authors":"Aryan Ayati, Shadera Azzam, Stella Ko, Cobi Ben-David, Michelle Wang, Nicole Bonine, David Tabano, Nina Malik, Frank Brodie, Mitul C Mehta, Vivek A Rudrapatna","doi":"10.2337/dc25-0951","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to evaluate the diabetic eye disease screening continuum at two academic centers and identify its barriers.</p><p><strong>Research design and methods: </strong>We analyzed health records from the University of California, San Francisco and University of California, Irvine to identify primary care patients needing diabetic eye screening. We tracked referrals, screenings, diagnoses, and treatments to evaluate predictors and the impact of an automated referral system. We analyzed physician notes using GPT-4o to determine reasons for missed screenings.</p><p><strong>Results: </strong>Of 8,240 unscreened patients with type 2 diabetes mellitus (T2DM), 43% received a referral, and only 16% completed screening within 1 year. Demographic, provider, and socioeconomic factors predicted adherence, with referrals being the strongest predictor. An automated referral system could improve screening rates to 22-34%. Clinician notes cited comorbidities, scheduling challenges, logistical issues, coronavirus disease 2019, and personal circumstances as barriers.</p><p><strong>Conclusions: </strong>Many patients with T2DM remain unscreened after primary care visits. Although an automated referral system may partially improve adherence, additional tailored strategies are needed.</p>","PeriodicalId":93979,"journal":{"name":"Diabetes care","volume":" ","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying Barriers to Diabetic Eye Screening: A Two-Center Study at the University of California.\",\"authors\":\"Aryan Ayati, Shadera Azzam, Stella Ko, Cobi Ben-David, Michelle Wang, Nicole Bonine, David Tabano, Nina Malik, Frank Brodie, Mitul C Mehta, Vivek A Rudrapatna\",\"doi\":\"10.2337/dc25-0951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>This study aimed to evaluate the diabetic eye disease screening continuum at two academic centers and identify its barriers.</p><p><strong>Research design and methods: </strong>We analyzed health records from the University of California, San Francisco and University of California, Irvine to identify primary care patients needing diabetic eye screening. We tracked referrals, screenings, diagnoses, and treatments to evaluate predictors and the impact of an automated referral system. We analyzed physician notes using GPT-4o to determine reasons for missed screenings.</p><p><strong>Results: </strong>Of 8,240 unscreened patients with type 2 diabetes mellitus (T2DM), 43% received a referral, and only 16% completed screening within 1 year. Demographic, provider, and socioeconomic factors predicted adherence, with referrals being the strongest predictor. An automated referral system could improve screening rates to 22-34%. Clinician notes cited comorbidities, scheduling challenges, logistical issues, coronavirus disease 2019, and personal circumstances as barriers.</p><p><strong>Conclusions: </strong>Many patients with T2DM remain unscreened after primary care visits. Although an automated referral system may partially improve adherence, additional tailored strategies are needed.</p>\",\"PeriodicalId\":93979,\"journal\":{\"name\":\"Diabetes care\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":16.6000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diabetes care\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2337/dc25-0951\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes care","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2337/dc25-0951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究旨在评估两个学术中心的糖尿病眼病筛查连续性并确定其障碍。研究设计和方法:我们分析了来自加州大学旧金山分校和加州大学尔湾分校的健康记录,以确定需要糖尿病眼科筛查的初级保健患者。我们跟踪转诊、筛查、诊断和治疗,以评估预测因素和自动转诊系统的影响。我们使用gpt - 40分析了医生的记录,以确定错过筛查的原因。结果:在8240例未筛查的2型糖尿病(T2DM)患者中,43%接受了转诊,只有16%在1年内完成了筛查。人口统计学、提供者和社会经济因素预测依从性,其中转诊是最强的预测因子。自动转诊系统可以将筛查率提高到22-34%。临床医生指出,合并症、日程安排挑战、后勤问题、2019年冠状病毒病和个人情况都是障碍。结论:许多T2DM患者在初级保健就诊后仍未接受筛查。虽然自动转诊系统可以部分提高依从性,但还需要额外的量身定制的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantifying Barriers to Diabetic Eye Screening: A Two-Center Study at the University of California.

Objective: This study aimed to evaluate the diabetic eye disease screening continuum at two academic centers and identify its barriers.

Research design and methods: We analyzed health records from the University of California, San Francisco and University of California, Irvine to identify primary care patients needing diabetic eye screening. We tracked referrals, screenings, diagnoses, and treatments to evaluate predictors and the impact of an automated referral system. We analyzed physician notes using GPT-4o to determine reasons for missed screenings.

Results: Of 8,240 unscreened patients with type 2 diabetes mellitus (T2DM), 43% received a referral, and only 16% completed screening within 1 year. Demographic, provider, and socioeconomic factors predicted adherence, with referrals being the strongest predictor. An automated referral system could improve screening rates to 22-34%. Clinician notes cited comorbidities, scheduling challenges, logistical issues, coronavirus disease 2019, and personal circumstances as barriers.

Conclusions: Many patients with T2DM remain unscreened after primary care visits. Although an automated referral system may partially improve adherence, additional tailored strategies are needed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
29.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信