Roberto Paolini, Riccardo Collu, Laura Tullio, Andrea Demofonti, Alessia Scarpelli, Francesca Cordella, Massimo Barbaro, Loredana Zollo
{"title":"用于上肢和下肢体位感觉反馈恢复的穿戴式刺激器。","authors":"Roberto Paolini, Riccardo Collu, Laura Tullio, Andrea Demofonti, Alessia Scarpelli, Francesca Cordella, Massimo Barbaro, Loredana Zollo","doi":"10.1109/TBCAS.2025.3607203","DOIUrl":null,"url":null,"abstract":"<p><p>Neuroprostheses capable of providing Somatotopic Sensory Feedback (SSF) enables the restoration of tactile sensations in amputees, thereby enhancing prosthesis embodiment, object manipulation, balance and walking stability. Transcutaneous Electrical Nerve Stimulation (TENS) represents a primary noninvasive technique for eliciting somatotopic sensations. Devices commonly used to evaluate the effectiveness of TENS stimulation are often bulky and main powered. However, current portable TENS devices frequently fall short of key functional requirements, particularly in terms of stimulation parameter ranges that are insufficient to reliably evoke somatotopic sensations in either upper and lower limb applications. Moreover, they typically do not support real-time independent channels programming and wireless communication. This work introduces a compact, wearable stimulator, including its external casing, with a total weight of 64 g and dimensions of 70 % 40 % 35 mm, designed to deliver SSF in both upper and lower limb applications. The device was validated through bench testing and human trials involving 20 healthy participants, by comparing the intensity, qualitative characteristics, and referred area of the elicited sensations with those produced by a benchmark. The stimulator reliably delivered the required parameters on a skin-like capacitive-resistive load and elicited somatotopic sensations consistent with the benchmark device and prior somatotopic feedback studies. The proposed stimulator provides non-invasive somatotopic sensory feedback for both upper and lower limbs. Its portability and modular design address key limitations of current commercial and research-grade TENS systems, enabling future studies on the functional benefits of sensory feedback in prosthetic control.</p>","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"PP ","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wearable stimulator for upper and lower limb somatotopic sensory feedback restoration.\",\"authors\":\"Roberto Paolini, Riccardo Collu, Laura Tullio, Andrea Demofonti, Alessia Scarpelli, Francesca Cordella, Massimo Barbaro, Loredana Zollo\",\"doi\":\"10.1109/TBCAS.2025.3607203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neuroprostheses capable of providing Somatotopic Sensory Feedback (SSF) enables the restoration of tactile sensations in amputees, thereby enhancing prosthesis embodiment, object manipulation, balance and walking stability. Transcutaneous Electrical Nerve Stimulation (TENS) represents a primary noninvasive technique for eliciting somatotopic sensations. Devices commonly used to evaluate the effectiveness of TENS stimulation are often bulky and main powered. However, current portable TENS devices frequently fall short of key functional requirements, particularly in terms of stimulation parameter ranges that are insufficient to reliably evoke somatotopic sensations in either upper and lower limb applications. Moreover, they typically do not support real-time independent channels programming and wireless communication. This work introduces a compact, wearable stimulator, including its external casing, with a total weight of 64 g and dimensions of 70 % 40 % 35 mm, designed to deliver SSF in both upper and lower limb applications. The device was validated through bench testing and human trials involving 20 healthy participants, by comparing the intensity, qualitative characteristics, and referred area of the elicited sensations with those produced by a benchmark. The stimulator reliably delivered the required parameters on a skin-like capacitive-resistive load and elicited somatotopic sensations consistent with the benchmark device and prior somatotopic feedback studies. The proposed stimulator provides non-invasive somatotopic sensory feedback for both upper and lower limbs. Its portability and modular design address key limitations of current commercial and research-grade TENS systems, enabling future studies on the functional benefits of sensory feedback in prosthetic control.</p>\",\"PeriodicalId\":94031,\"journal\":{\"name\":\"IEEE transactions on biomedical circuits and systems\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on biomedical circuits and systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TBCAS.2025.3607203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TBCAS.2025.3607203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Wearable stimulator for upper and lower limb somatotopic sensory feedback restoration.
Neuroprostheses capable of providing Somatotopic Sensory Feedback (SSF) enables the restoration of tactile sensations in amputees, thereby enhancing prosthesis embodiment, object manipulation, balance and walking stability. Transcutaneous Electrical Nerve Stimulation (TENS) represents a primary noninvasive technique for eliciting somatotopic sensations. Devices commonly used to evaluate the effectiveness of TENS stimulation are often bulky and main powered. However, current portable TENS devices frequently fall short of key functional requirements, particularly in terms of stimulation parameter ranges that are insufficient to reliably evoke somatotopic sensations in either upper and lower limb applications. Moreover, they typically do not support real-time independent channels programming and wireless communication. This work introduces a compact, wearable stimulator, including its external casing, with a total weight of 64 g and dimensions of 70 % 40 % 35 mm, designed to deliver SSF in both upper and lower limb applications. The device was validated through bench testing and human trials involving 20 healthy participants, by comparing the intensity, qualitative characteristics, and referred area of the elicited sensations with those produced by a benchmark. The stimulator reliably delivered the required parameters on a skin-like capacitive-resistive load and elicited somatotopic sensations consistent with the benchmark device and prior somatotopic feedback studies. The proposed stimulator provides non-invasive somatotopic sensory feedback for both upper and lower limbs. Its portability and modular design address key limitations of current commercial and research-grade TENS systems, enabling future studies on the functional benefits of sensory feedback in prosthetic control.