Zheng Zheng, Ning Wang, Huiyu Yang, Xiaofei Gong, Jia Zheng, Yangyiyao Bai, Pengxin Tang, Shujiang Chen and Wenchuan Chen
{"title":"点击化学驱动的黏附水凝胶,通过多阶段综合管理,使感染伤口有效愈合。","authors":"Zheng Zheng, Ning Wang, Huiyu Yang, Xiaofei Gong, Jia Zheng, Yangyiyao Bai, Pengxin Tang, Shujiang Chen and Wenchuan Chen","doi":"10.1039/D5TB01743B","DOIUrl":null,"url":null,"abstract":"<p >Infected wound treatment remains a critical challenge in clinical medicine. Although existing treatments, like local debridement, antimicrobial agents, and growth factor therapies, have demonstrated certain therapeutic effects, they primarily target only specific stages of wound healing. Moreover, the escalating issue of antibiotic resistance limits their efficacy. To address these challenges, this study employs click chemistry to develop a multifunctional composite hydrogel, aiming to provide a comprehensive and effective treatment strategy. This hydrogel hybrid system comprises methacrylated hyaluronic acid, sulfhydryl kappa-carrageenan, and tannic acid (referred to as HKT). By utilizing a one-step click chemistry strategy (thiol–ene reaction), we innovatively integrated a dynamically cross-linked network. This strategy eliminates toxic by-products while enabling sustained polyphenol release, establishing a therapeutic platform that orchestrates multistage interventions during infected wound management. The resulting composite hydrogel manifests appropriate mechanical characteristics, favorable rheological properties and strong tissue adhesiveness. Additionally, this hydrogel exhibits excellent antioxidant and antibacterial properties, with a ROS scavenging rate reaching 69.62% and an antibacterial efficacy of up to 99%. Furthermore, it demonstrates outstanding biocompatibility and a balanced ability to modulate inflammation and promote angiogenesis. <em>In vivo</em> studies reveal a significant enhancement in wound healing efficiency, with an improvement of 48.4% compared to the control group. This study provides a theoretical and practical foundation for the multistage comprehensive management of infected wound healing.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 37","pages":" 11582-11596"},"PeriodicalIF":6.1000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Click chemistry-driven adhesive hydrogel for efficient healing of infected wounds through multistage comprehensive management\",\"authors\":\"Zheng Zheng, Ning Wang, Huiyu Yang, Xiaofei Gong, Jia Zheng, Yangyiyao Bai, Pengxin Tang, Shujiang Chen and Wenchuan Chen\",\"doi\":\"10.1039/D5TB01743B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Infected wound treatment remains a critical challenge in clinical medicine. Although existing treatments, like local debridement, antimicrobial agents, and growth factor therapies, have demonstrated certain therapeutic effects, they primarily target only specific stages of wound healing. Moreover, the escalating issue of antibiotic resistance limits their efficacy. To address these challenges, this study employs click chemistry to develop a multifunctional composite hydrogel, aiming to provide a comprehensive and effective treatment strategy. This hydrogel hybrid system comprises methacrylated hyaluronic acid, sulfhydryl kappa-carrageenan, and tannic acid (referred to as HKT). By utilizing a one-step click chemistry strategy (thiol–ene reaction), we innovatively integrated a dynamically cross-linked network. This strategy eliminates toxic by-products while enabling sustained polyphenol release, establishing a therapeutic platform that orchestrates multistage interventions during infected wound management. The resulting composite hydrogel manifests appropriate mechanical characteristics, favorable rheological properties and strong tissue adhesiveness. Additionally, this hydrogel exhibits excellent antioxidant and antibacterial properties, with a ROS scavenging rate reaching 69.62% and an antibacterial efficacy of up to 99%. Furthermore, it demonstrates outstanding biocompatibility and a balanced ability to modulate inflammation and promote angiogenesis. <em>In vivo</em> studies reveal a significant enhancement in wound healing efficiency, with an improvement of 48.4% compared to the control group. This study provides a theoretical and practical foundation for the multistage comprehensive management of infected wound healing.</p>\",\"PeriodicalId\":83,\"journal\":{\"name\":\"Journal of Materials Chemistry B\",\"volume\":\" 37\",\"pages\":\" 11582-11596\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d5tb01743b\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d5tb01743b","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Click chemistry-driven adhesive hydrogel for efficient healing of infected wounds through multistage comprehensive management
Infected wound treatment remains a critical challenge in clinical medicine. Although existing treatments, like local debridement, antimicrobial agents, and growth factor therapies, have demonstrated certain therapeutic effects, they primarily target only specific stages of wound healing. Moreover, the escalating issue of antibiotic resistance limits their efficacy. To address these challenges, this study employs click chemistry to develop a multifunctional composite hydrogel, aiming to provide a comprehensive and effective treatment strategy. This hydrogel hybrid system comprises methacrylated hyaluronic acid, sulfhydryl kappa-carrageenan, and tannic acid (referred to as HKT). By utilizing a one-step click chemistry strategy (thiol–ene reaction), we innovatively integrated a dynamically cross-linked network. This strategy eliminates toxic by-products while enabling sustained polyphenol release, establishing a therapeutic platform that orchestrates multistage interventions during infected wound management. The resulting composite hydrogel manifests appropriate mechanical characteristics, favorable rheological properties and strong tissue adhesiveness. Additionally, this hydrogel exhibits excellent antioxidant and antibacterial properties, with a ROS scavenging rate reaching 69.62% and an antibacterial efficacy of up to 99%. Furthermore, it demonstrates outstanding biocompatibility and a balanced ability to modulate inflammation and promote angiogenesis. In vivo studies reveal a significant enhancement in wound healing efficiency, with an improvement of 48.4% compared to the control group. This study provides a theoretical and practical foundation for the multistage comprehensive management of infected wound healing.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices