Zhenhao Hou, Xingdan Liu, Xianming Zhang, Ji Tan, Xuanyong Liu
{"title":"钛基银钙微原电池的免疫调节成骨研究。","authors":"Zhenhao Hou, Xingdan Liu, Xianming Zhang, Ji Tan, Xuanyong Liu","doi":"10.34133/bmef.0173","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objective:</b> This work aims to construct a functional titanium surface with spontaneous electrical stimulation for immune osteogenesis and antibacteria. <b>Impact Statement:</b> A silver-calcium micro-galvanic cell was engineered on the titanium implant surface to spontaneously generate microcurrents for osteoimmunomodulation and bacteria killing, which provides a promising strategy for the design of a multifunctional electroactive titanium implant. <b>Introduction:</b> Titanium-based implants are usually bioinert, which often leads to inflammation-induced loosening. Electrical stimulation has therapeutic potential; however, its dependence on external devices limits its clinical application. Therefore, designing an electroactive titanium surface with endogenous electrical stimulation capability is a promising strategy to overcome implant failure induced by inflammation. <b>Methods:</b> The silver-calcium micro-galvanic cell was constructed on titanium substrate surfaces by the ion implantation technique. RAW264.7 and MC3T3-E1 were used for cell culture studies with the material to evaluate immunomodulatory and osteogenic abilities of the implant. The expression levels of inflammatory genes and voltage-gated Ca<sup>2+</sup> channel-related genes were tested for investigating the mechanism of immunoregulation. The antibacterial properties of the modified titanium were assessed. Finally, its immunomodulatory effects in vivo were verified by a mouse subcutaneous inflammation model. <b>Results:</b> The silver-calcium micro-galvanic modified titanium surface generates microcurrents and releases Ca<sup>2+</sup>, which induces macrophage polarization toward the M2 phenotype and promotes osteogenic differentiation via paracrine signaling, exhibiting excellent antibacterial activity. <b>Conclusion:</b> The silver-calcium micro-galvanic cell on titanium could regulate the immune response to promote bone repair and exhibit antibacterial capabilities through noninvasive electrical stimulation, providing a promising strategy for the design of multifunctional electroactive implant surfaces.</p>","PeriodicalId":72430,"journal":{"name":"BME frontiers","volume":"6 ","pages":"0173"},"PeriodicalIF":7.7000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12415334/pdf/","citationCount":"0","resultStr":"{\"title\":\"Construction of Silver-Calcium Micro-Galvanic Cell on Titanium for Immunoregulation Osteogenesis.\",\"authors\":\"Zhenhao Hou, Xingdan Liu, Xianming Zhang, Ji Tan, Xuanyong Liu\",\"doi\":\"10.34133/bmef.0173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Objective:</b> This work aims to construct a functional titanium surface with spontaneous electrical stimulation for immune osteogenesis and antibacteria. <b>Impact Statement:</b> A silver-calcium micro-galvanic cell was engineered on the titanium implant surface to spontaneously generate microcurrents for osteoimmunomodulation and bacteria killing, which provides a promising strategy for the design of a multifunctional electroactive titanium implant. <b>Introduction:</b> Titanium-based implants are usually bioinert, which often leads to inflammation-induced loosening. Electrical stimulation has therapeutic potential; however, its dependence on external devices limits its clinical application. Therefore, designing an electroactive titanium surface with endogenous electrical stimulation capability is a promising strategy to overcome implant failure induced by inflammation. <b>Methods:</b> The silver-calcium micro-galvanic cell was constructed on titanium substrate surfaces by the ion implantation technique. RAW264.7 and MC3T3-E1 were used for cell culture studies with the material to evaluate immunomodulatory and osteogenic abilities of the implant. The expression levels of inflammatory genes and voltage-gated Ca<sup>2+</sup> channel-related genes were tested for investigating the mechanism of immunoregulation. The antibacterial properties of the modified titanium were assessed. Finally, its immunomodulatory effects in vivo were verified by a mouse subcutaneous inflammation model. <b>Results:</b> The silver-calcium micro-galvanic modified titanium surface generates microcurrents and releases Ca<sup>2+</sup>, which induces macrophage polarization toward the M2 phenotype and promotes osteogenic differentiation via paracrine signaling, exhibiting excellent antibacterial activity. <b>Conclusion:</b> The silver-calcium micro-galvanic cell on titanium could regulate the immune response to promote bone repair and exhibit antibacterial capabilities through noninvasive electrical stimulation, providing a promising strategy for the design of multifunctional electroactive implant surfaces.</p>\",\"PeriodicalId\":72430,\"journal\":{\"name\":\"BME frontiers\",\"volume\":\"6 \",\"pages\":\"0173\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12415334/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BME frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34133/bmef.0173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BME frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/bmef.0173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Construction of Silver-Calcium Micro-Galvanic Cell on Titanium for Immunoregulation Osteogenesis.
Objective: This work aims to construct a functional titanium surface with spontaneous electrical stimulation for immune osteogenesis and antibacteria. Impact Statement: A silver-calcium micro-galvanic cell was engineered on the titanium implant surface to spontaneously generate microcurrents for osteoimmunomodulation and bacteria killing, which provides a promising strategy for the design of a multifunctional electroactive titanium implant. Introduction: Titanium-based implants are usually bioinert, which often leads to inflammation-induced loosening. Electrical stimulation has therapeutic potential; however, its dependence on external devices limits its clinical application. Therefore, designing an electroactive titanium surface with endogenous electrical stimulation capability is a promising strategy to overcome implant failure induced by inflammation. Methods: The silver-calcium micro-galvanic cell was constructed on titanium substrate surfaces by the ion implantation technique. RAW264.7 and MC3T3-E1 were used for cell culture studies with the material to evaluate immunomodulatory and osteogenic abilities of the implant. The expression levels of inflammatory genes and voltage-gated Ca2+ channel-related genes were tested for investigating the mechanism of immunoregulation. The antibacterial properties of the modified titanium were assessed. Finally, its immunomodulatory effects in vivo were verified by a mouse subcutaneous inflammation model. Results: The silver-calcium micro-galvanic modified titanium surface generates microcurrents and releases Ca2+, which induces macrophage polarization toward the M2 phenotype and promotes osteogenic differentiation via paracrine signaling, exhibiting excellent antibacterial activity. Conclusion: The silver-calcium micro-galvanic cell on titanium could regulate the immune response to promote bone repair and exhibit antibacterial capabilities through noninvasive electrical stimulation, providing a promising strategy for the design of multifunctional electroactive implant surfaces.