{"title":"双层壳聚糖支架:一种模仿天然皮肤结构的新方法。","authors":"Afsaneh Ehsandoost, Tero Järvinen, Elnaz Tamjid","doi":"10.1088/1748-605X/ae0549","DOIUrl":null,"url":null,"abstract":"<p><p>It is essential to develop new strategies for wound treatment and skin reconstruction, particularly by scaffolds that replicate the structure and function of native skin. A bilayer scaffold was developed using three-dimensional bioprinting, based on a uniform chitosan-based formulation for both layers, maintaining material uniformity while offering structural support and promoting cell adhesion. The upper chitosan layer, embedded with Newborn Human Epidermal Keratinocytes-Neo, is stiffer and mimics the epidermis, while the softer lower layer contains embedded HFFs and HFSCs, mimicking the dermis. Moreover, the softer layer was infused with recombinant decorin (DCN) proteoglycans for skin repair through controlled release. The scaffold facilitates effective fluid management. Its positive contact angle suggests sufficient wettability. The scaffold layers have high water content and swelling capacity. The epidermis displayed lower compressive strength due to its more protective and less hydrated nature. Rheological analysis confirmed the scaffold's viscoelastic behavior. Chitosan-gel had high cytocompatibility. Chitosan scaffolds supplemented with DCN proteoglycans had enhanced blood entrapment and clotting. The scaffold's timely biodegradation may reduce prolonged material exposure and support safe tissue integration. This scaffold has potential in the treatment of acute and chronic wounds.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D-bioprinted cell-laden bilayered chitosan scaffolds with decorin: a novel approach to mimicking skin architecture.\",\"authors\":\"Afsaneh Ehsandoost, Tero Järvinen, Elnaz Tamjid\",\"doi\":\"10.1088/1748-605X/ae0549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is essential to develop new strategies for wound treatment and skin reconstruction, particularly by scaffolds that replicate the structure and function of native skin. A bilayer scaffold was developed using three-dimensional bioprinting, based on a uniform chitosan-based formulation for both layers, maintaining material uniformity while offering structural support and promoting cell adhesion. The upper chitosan layer, embedded with Newborn Human Epidermal Keratinocytes-Neo, is stiffer and mimics the epidermis, while the softer lower layer contains embedded HFFs and HFSCs, mimicking the dermis. Moreover, the softer layer was infused with recombinant decorin (DCN) proteoglycans for skin repair through controlled release. The scaffold facilitates effective fluid management. Its positive contact angle suggests sufficient wettability. The scaffold layers have high water content and swelling capacity. The epidermis displayed lower compressive strength due to its more protective and less hydrated nature. Rheological analysis confirmed the scaffold's viscoelastic behavior. Chitosan-gel had high cytocompatibility. Chitosan scaffolds supplemented with DCN proteoglycans had enhanced blood entrapment and clotting. The scaffold's timely biodegradation may reduce prolonged material exposure and support safe tissue integration. This scaffold has potential in the treatment of acute and chronic wounds.</p>\",\"PeriodicalId\":72389,\"journal\":{\"name\":\"Biomedical materials (Bristol, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical materials (Bristol, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-605X/ae0549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/ae0549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
3D-bioprinted cell-laden bilayered chitosan scaffolds with decorin: a novel approach to mimicking skin architecture.
It is essential to develop new strategies for wound treatment and skin reconstruction, particularly by scaffolds that replicate the structure and function of native skin. A bilayer scaffold was developed using three-dimensional bioprinting, based on a uniform chitosan-based formulation for both layers, maintaining material uniformity while offering structural support and promoting cell adhesion. The upper chitosan layer, embedded with Newborn Human Epidermal Keratinocytes-Neo, is stiffer and mimics the epidermis, while the softer lower layer contains embedded HFFs and HFSCs, mimicking the dermis. Moreover, the softer layer was infused with recombinant decorin (DCN) proteoglycans for skin repair through controlled release. The scaffold facilitates effective fluid management. Its positive contact angle suggests sufficient wettability. The scaffold layers have high water content and swelling capacity. The epidermis displayed lower compressive strength due to its more protective and less hydrated nature. Rheological analysis confirmed the scaffold's viscoelastic behavior. Chitosan-gel had high cytocompatibility. Chitosan scaffolds supplemented with DCN proteoglycans had enhanced blood entrapment and clotting. The scaffold's timely biodegradation may reduce prolonged material exposure and support safe tissue integration. This scaffold has potential in the treatment of acute and chronic wounds.