统一组织成像的通用免疫荧光归一化。

IF 4.5 Q1 BIOCHEMICAL RESEARCH METHODS
Cell Reports Methods Pub Date : 2025-09-15 Epub Date: 2025-09-08 DOI:10.1016/j.crmeth.2025.101172
Kunlun Wang, Kaoutar Ait-Ahmad, Sam Kupp, Zachary Sims, Eric Cramer, Zeynep Sayar, Jessica Yu, Melissa H Wong, Gordon B Mills, S Ece Eksi, Young Hwan Chang
{"title":"统一组织成像的通用免疫荧光归一化。","authors":"Kunlun Wang, Kaoutar Ait-Ahmad, Sam Kupp, Zachary Sims, Eric Cramer, Zeynep Sayar, Jessica Yu, Melissa H Wong, Gordon B Mills, S Ece Eksi, Young Hwan Chang","doi":"10.1016/j.crmeth.2025.101172","DOIUrl":null,"url":null,"abstract":"<p><p>We present UniFORM, a non-parametric, Python-based pipeline for normalizing multiplex tissue imaging (MTI) data at both the feature and pixel levels. UniFORM employs an automated rigid landmark registration method tailored to the distributional characteristics of MTI, with UniFORM operating without prior distributional assumptions and handling both unimodal and bimodal patterns. By aligning the biologically invariant negative populations, UniFORM removes technical variation while preserving tissue-specific expression patterns in positive populations. Benchmarked on three MTI platforms, UniFORM consistently outperforms existing methods in mitigating batch effects while maintaining biological signal fidelity. This is evidenced by improved marker distribution alignment and positive population preservation, enhanced k-nearest neighbor batch effect test (kBET) and silhouette scores, and more coherent downstream analyses, such as uniform manifold approximation and projection (UMAP) visualizations and Leiden clustering. UniFORM also offers an optional guided fine-tuning mode for complex or heterogeneous datasets. While optimized for fluorescence-based MTI, its scalable design supports broad applications for MTI data normalization, enabling accurate and biologically meaningful interpretations.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"101172"},"PeriodicalIF":4.5000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward universal immunofluorescence normalization for multiplex tissue imaging with UniFORM.\",\"authors\":\"Kunlun Wang, Kaoutar Ait-Ahmad, Sam Kupp, Zachary Sims, Eric Cramer, Zeynep Sayar, Jessica Yu, Melissa H Wong, Gordon B Mills, S Ece Eksi, Young Hwan Chang\",\"doi\":\"10.1016/j.crmeth.2025.101172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present UniFORM, a non-parametric, Python-based pipeline for normalizing multiplex tissue imaging (MTI) data at both the feature and pixel levels. UniFORM employs an automated rigid landmark registration method tailored to the distributional characteristics of MTI, with UniFORM operating without prior distributional assumptions and handling both unimodal and bimodal patterns. By aligning the biologically invariant negative populations, UniFORM removes technical variation while preserving tissue-specific expression patterns in positive populations. Benchmarked on three MTI platforms, UniFORM consistently outperforms existing methods in mitigating batch effects while maintaining biological signal fidelity. This is evidenced by improved marker distribution alignment and positive population preservation, enhanced k-nearest neighbor batch effect test (kBET) and silhouette scores, and more coherent downstream analyses, such as uniform manifold approximation and projection (UMAP) visualizations and Leiden clustering. UniFORM also offers an optional guided fine-tuning mode for complex or heterogeneous datasets. While optimized for fluorescence-based MTI, its scalable design supports broad applications for MTI data normalization, enabling accurate and biologically meaningful interpretations.</p>\",\"PeriodicalId\":29773,\"journal\":{\"name\":\"Cell Reports Methods\",\"volume\":\" \",\"pages\":\"101172\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.crmeth.2025.101172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2025.101172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了UniFORM,一个非参数的,基于python的管道,用于在特征和像素水平上规范化多路组织成像(MTI)数据。UniFORM采用了一种针对MTI分布特征量身定制的自动刚性地标注册方法,在没有事先分布假设的情况下运行,可以处理单峰和双峰模式。通过对齐生物学上不变的阴性种群,UniFORM消除了技术变异,同时保留了阳性种群中组织特异性表达模式。在三个MTI平台上进行基准测试,在保持生物信号保真度的同时,UniFORM在减轻批处理影响方面始终优于现有方法。这可以通过改进的标记分布对齐和正种群保存,增强的k-最近邻批效应检验(kBET)和剪影分数,以及更连贯的下游分析(如均匀流形近似和投影(UMAP)可视化和莱顿聚类)来证明。UniFORM还为复杂或异构数据集提供了可选的引导微调模式。虽然针对基于荧光的MTI进行了优化,但其可扩展的设计支持MTI数据规范化的广泛应用,从而实现准确且具有生物学意义的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward universal immunofluorescence normalization for multiplex tissue imaging with UniFORM.

We present UniFORM, a non-parametric, Python-based pipeline for normalizing multiplex tissue imaging (MTI) data at both the feature and pixel levels. UniFORM employs an automated rigid landmark registration method tailored to the distributional characteristics of MTI, with UniFORM operating without prior distributional assumptions and handling both unimodal and bimodal patterns. By aligning the biologically invariant negative populations, UniFORM removes technical variation while preserving tissue-specific expression patterns in positive populations. Benchmarked on three MTI platforms, UniFORM consistently outperforms existing methods in mitigating batch effects while maintaining biological signal fidelity. This is evidenced by improved marker distribution alignment and positive population preservation, enhanced k-nearest neighbor batch effect test (kBET) and silhouette scores, and more coherent downstream analyses, such as uniform manifold approximation and projection (UMAP) visualizations and Leiden clustering. UniFORM also offers an optional guided fine-tuning mode for complex or heterogeneous datasets. While optimized for fluorescence-based MTI, its scalable design supports broad applications for MTI data normalization, enabling accurate and biologically meaningful interpretations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信