灵活和鲁棒的细胞类型注释高度复用的组织图像。

IF 7.7
Cell systems Pub Date : 2025-09-17 Epub Date: 2025-09-08 DOI:10.1016/j.cels.2025.101374
Huangqingbo Sun, Shiqiu Yu, Anna Martinez Casals, Anna Bäckström, Yuxin Lu, Cecilia Lindskog, Matthew Ruffalo, Emma Lundberg, Robert F Murphy
{"title":"灵活和鲁棒的细胞类型注释高度复用的组织图像。","authors":"Huangqingbo Sun, Shiqiu Yu, Anna Martinez Casals, Anna Bäckström, Yuxin Lu, Cecilia Lindskog, Matthew Ruffalo, Emma Lundberg, Robert F Murphy","doi":"10.1016/j.cels.2025.101374","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying cell types in highly multiplexed images is essential for understanding tissue spatial organization. Current cell-type annotation methods often rely on extensive reference images and manual adjustments. In this work, we present a tool, the Robust Image-Based Cell Annotator (RIBCA), that enables accurate, automated, unbiased, and fine-grained cell-type annotation for images with a wide range of antibody panels without requiring additional model training or human intervention. Our tool has successfully annotated over 3 million cells, revealing the spatial organization of various cell types across more than 40 different human tissues. It is open source and features a modular design, allowing for easy extension to additional cell types.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"101374"},"PeriodicalIF":7.7000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible and robust cell-type annotation for highly multiplexed tissue images.\",\"authors\":\"Huangqingbo Sun, Shiqiu Yu, Anna Martinez Casals, Anna Bäckström, Yuxin Lu, Cecilia Lindskog, Matthew Ruffalo, Emma Lundberg, Robert F Murphy\",\"doi\":\"10.1016/j.cels.2025.101374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Identifying cell types in highly multiplexed images is essential for understanding tissue spatial organization. Current cell-type annotation methods often rely on extensive reference images and manual adjustments. In this work, we present a tool, the Robust Image-Based Cell Annotator (RIBCA), that enables accurate, automated, unbiased, and fine-grained cell-type annotation for images with a wide range of antibody panels without requiring additional model training or human intervention. Our tool has successfully annotated over 3 million cells, revealing the spatial organization of various cell types across more than 40 different human tissues. It is open source and features a modular design, allowing for easy extension to additional cell types.</p>\",\"PeriodicalId\":93929,\"journal\":{\"name\":\"Cell systems\",\"volume\":\" \",\"pages\":\"101374\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cels.2025.101374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2025.101374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在高度复用的图像中识别细胞类型对于理解组织空间组织是必不可少的。当前的单元格类型注释方法通常依赖于大量的参考图像和手动调整。在这项工作中,我们提出了一种工具,稳健的基于图像的细胞注释器(RIBCA),它可以对具有广泛抗体面板的图像进行准确,自动化,无偏和细粒度的细胞类型注释,而无需额外的模型训练或人为干预。我们的工具已经成功地注释了超过300万个细胞,揭示了40多种不同人体组织中各种细胞类型的空间组织。它是开源的,具有模块化设计,允许轻松扩展到其他单元类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flexible and robust cell-type annotation for highly multiplexed tissue images.

Identifying cell types in highly multiplexed images is essential for understanding tissue spatial organization. Current cell-type annotation methods often rely on extensive reference images and manual adjustments. In this work, we present a tool, the Robust Image-Based Cell Annotator (RIBCA), that enables accurate, automated, unbiased, and fine-grained cell-type annotation for images with a wide range of antibody panels without requiring additional model training or human intervention. Our tool has successfully annotated over 3 million cells, revealing the spatial organization of various cell types across more than 40 different human tissues. It is open source and features a modular design, allowing for easy extension to additional cell types.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信