基于超转录组学的感染期间患者特异性尿微生物组代谢模型。

IF 9.2 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Jonathan Josephs-Spaulding, Hannah Clara Rettig, Johannes Zimmermann, Mariam Chkonia, Alexander Mischnik, Sören Franzenburg, Simon Graspeuntner, Jan Rupp, Christoph Kaleta
{"title":"基于超转录组学的感染期间患者特异性尿微生物组代谢模型。","authors":"Jonathan Josephs-Spaulding, Hannah Clara Rettig, Johannes Zimmermann, Mariam Chkonia, Alexander Mischnik, Sören Franzenburg, Simon Graspeuntner, Jan Rupp, Christoph Kaleta","doi":"10.1038/s41522-025-00823-6","DOIUrl":null,"url":null,"abstract":"<p><p>Urinary tract infections (UTIs) are among the most common bacterial infections and are increasingly complicated by multidrug resistance (MDR). While Escherichia coli is frequently implicated, the contribution of broader microbial communities remains less understood. Here, we integrate metatranscriptomic sequencing with genome-scale metabolic modeling to characterize active metabolic functions of patient-specific urinary microbiomes during acute UTI. We analyzed urine samples from 19 female patients with confirmed uropathogenic E. coli (UPEC) infections, reconstructing personalized community models constrained by gene expression and simulated in a virtual urine environment. This systems biology approach revealed marked inter-patient variability in microbial composition, transcriptional activity, and metabolic behavior. We identified distinct virulence strategies, metabolic cross-feeding, and a modulatory role for Lactobacillus species. Comparisons between transcript-constrained and unconstrained models showed that integrating gene expression narrows flux variability and enhances biological relevance. These findings highlight the metabolic heterogeneity of UTI-associated microbiota and point to microbiome-informed diagnostic and therapeutic strategies for managing MDR infections.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"11 1","pages":"183"},"PeriodicalIF":9.2000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12420794/pdf/","citationCount":"0","resultStr":"{\"title\":\"Metatranscriptomics-based metabolic modeling of patient-specific urinary microbiome during infection.\",\"authors\":\"Jonathan Josephs-Spaulding, Hannah Clara Rettig, Johannes Zimmermann, Mariam Chkonia, Alexander Mischnik, Sören Franzenburg, Simon Graspeuntner, Jan Rupp, Christoph Kaleta\",\"doi\":\"10.1038/s41522-025-00823-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Urinary tract infections (UTIs) are among the most common bacterial infections and are increasingly complicated by multidrug resistance (MDR). While Escherichia coli is frequently implicated, the contribution of broader microbial communities remains less understood. Here, we integrate metatranscriptomic sequencing with genome-scale metabolic modeling to characterize active metabolic functions of patient-specific urinary microbiomes during acute UTI. We analyzed urine samples from 19 female patients with confirmed uropathogenic E. coli (UPEC) infections, reconstructing personalized community models constrained by gene expression and simulated in a virtual urine environment. This systems biology approach revealed marked inter-patient variability in microbial composition, transcriptional activity, and metabolic behavior. We identified distinct virulence strategies, metabolic cross-feeding, and a modulatory role for Lactobacillus species. Comparisons between transcript-constrained and unconstrained models showed that integrating gene expression narrows flux variability and enhances biological relevance. These findings highlight the metabolic heterogeneity of UTI-associated microbiota and point to microbiome-informed diagnostic and therapeutic strategies for managing MDR infections.</p>\",\"PeriodicalId\":19370,\"journal\":{\"name\":\"npj Biofilms and Microbiomes\",\"volume\":\"11 1\",\"pages\":\"183\"},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12420794/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Biofilms and Microbiomes\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41522-025-00823-6\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biofilms and Microbiomes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41522-025-00823-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

尿路感染(uti)是最常见的细菌感染之一,并且越来越多地因多药耐药(MDR)而复杂化。虽然经常涉及大肠杆菌,但对更广泛的微生物群落的贡献仍然知之甚少。在这里,我们将超转录组测序与基因组尺度的代谢模型相结合,以表征急性尿路感染期间患者特异性尿微生物组的活跃代谢功能。我们分析了19例确诊尿路致病性大肠杆菌(UPEC)感染的女性患者的尿液样本,重建了受基因表达约束的个性化社区模型,并在虚拟尿液环境中进行了模拟。这种系统生物学方法揭示了微生物组成、转录活性和代谢行为在患者间的显著差异。我们确定了不同的毒力策略,代谢交叉喂养和乳杆菌物种的调节作用。转录约束和无约束模型的比较表明,整合基因表达缩小了通量变异性,增强了生物学相关性。这些发现强调了尿路感染相关微生物群的代谢异质性,并指出了针对微生物组的诊断和治疗策略,以管理耐多药感染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Metatranscriptomics-based metabolic modeling of patient-specific urinary microbiome during infection.

Metatranscriptomics-based metabolic modeling of patient-specific urinary microbiome during infection.

Metatranscriptomics-based metabolic modeling of patient-specific urinary microbiome during infection.

Metatranscriptomics-based metabolic modeling of patient-specific urinary microbiome during infection.

Urinary tract infections (UTIs) are among the most common bacterial infections and are increasingly complicated by multidrug resistance (MDR). While Escherichia coli is frequently implicated, the contribution of broader microbial communities remains less understood. Here, we integrate metatranscriptomic sequencing with genome-scale metabolic modeling to characterize active metabolic functions of patient-specific urinary microbiomes during acute UTI. We analyzed urine samples from 19 female patients with confirmed uropathogenic E. coli (UPEC) infections, reconstructing personalized community models constrained by gene expression and simulated in a virtual urine environment. This systems biology approach revealed marked inter-patient variability in microbial composition, transcriptional activity, and metabolic behavior. We identified distinct virulence strategies, metabolic cross-feeding, and a modulatory role for Lactobacillus species. Comparisons between transcript-constrained and unconstrained models showed that integrating gene expression narrows flux variability and enhances biological relevance. These findings highlight the metabolic heterogeneity of UTI-associated microbiota and point to microbiome-informed diagnostic and therapeutic strategies for managing MDR infections.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Biofilms and Microbiomes
npj Biofilms and Microbiomes Immunology and Microbiology-Microbiology
CiteScore
12.10
自引率
3.30%
发文量
91
审稿时长
9 weeks
期刊介绍: npj Biofilms and Microbiomes is a comprehensive platform that promotes research on biofilms and microbiomes across various scientific disciplines. The journal facilitates cross-disciplinary discussions to enhance our understanding of the biology, ecology, and communal functions of biofilms, populations, and communities. It also focuses on applications in the medical, environmental, and engineering domains. The scope of the journal encompasses all aspects of the field, ranging from cell-cell communication and single cell interactions to the microbiomes of humans, animals, plants, and natural and built environments. The journal also welcomes research on the virome, phageome, mycome, and fungome. It publishes both applied science and theoretical work. As an open access and interdisciplinary journal, its primary goal is to publish significant scientific advancements in microbial biofilms and microbiomes. The journal enables discussions that span multiple disciplines and contributes to our understanding of the social behavior of microbial biofilm populations and communities, and their impact on life, human health, and the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信