随波逐流:蒲公英种子的定向脱落。

IF 3.5 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Journal of The Royal Society Interface Pub Date : 2025-09-01 Epub Date: 2025-09-10 DOI:10.1098/rsif.2025.0227
Jena Shields, Fiorella Ramirez-Esquivel, Yukun Sun, Aspen Shih, Sridhar Ravi, Chris Roh
{"title":"随波逐流:蒲公英种子的定向脱落。","authors":"Jena Shields, Fiorella Ramirez-Esquivel, Yukun Sun, Aspen Shih, Sridhar Ravi, Chris Roh","doi":"10.1098/rsif.2025.0227","DOIUrl":null,"url":null,"abstract":"<p><p>Seed dispersal through wind was historically considered a random process; however, plants can influence their dispersal through non-random seed detachment or abscission. Dandelion seeds facing the wind tend to abscise before those facing downwind, yet the mechanism that supports this has remained unclear. We measured the force needed for abscission in different directions and performed imaging of the detachment process. This revealed an asymmetry in the seed attachment morphology, which results in massive differences in the abscission force needed relative to the direction. We developed a mechanistic model to explain this directional bias and identified morphological factors that determine the properties of seed abscission. This discovery highlights plant adaptations that shape the seed dispersal profile to enhance reproductive success and can be used to improve population dynamic models of wind-dispersed plants.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 230","pages":"20250227"},"PeriodicalIF":3.5000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12419876/pdf/","citationCount":"0","resultStr":"{\"title\":\"<i>Letting go with the flow:</i> directional abscission of dandelion seeds.\",\"authors\":\"Jena Shields, Fiorella Ramirez-Esquivel, Yukun Sun, Aspen Shih, Sridhar Ravi, Chris Roh\",\"doi\":\"10.1098/rsif.2025.0227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Seed dispersal through wind was historically considered a random process; however, plants can influence their dispersal through non-random seed detachment or abscission. Dandelion seeds facing the wind tend to abscise before those facing downwind, yet the mechanism that supports this has remained unclear. We measured the force needed for abscission in different directions and performed imaging of the detachment process. This revealed an asymmetry in the seed attachment morphology, which results in massive differences in the abscission force needed relative to the direction. We developed a mechanistic model to explain this directional bias and identified morphological factors that determine the properties of seed abscission. This discovery highlights plant adaptations that shape the seed dispersal profile to enhance reproductive success and can be used to improve population dynamic models of wind-dispersed plants.</p>\",\"PeriodicalId\":17488,\"journal\":{\"name\":\"Journal of The Royal Society Interface\",\"volume\":\"22 230\",\"pages\":\"20250227\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12419876/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Royal Society Interface\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsif.2025.0227\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2025.0227","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在历史上,种子通过风传播被认为是一个随机过程;然而,植物可以通过非随机种子脱离或脱落来影响它们的扩散。迎风的蒲公英种子比迎风的蒲公英种子更容易脱落,但支持这一现象的机制尚不清楚。我们测量了不同方向分离所需的力,并对分离过程进行了成像。这揭示了种子附着形态的不对称性,这导致了相对于方向所需的分离力的巨大差异。我们建立了一个机制模型来解释这种方向偏差,并确定了决定种子脱落特性的形态因素。这一发现强调了植物的适应性,这些适应性塑造了种子传播剖面,从而提高了繁殖成功率,并可用于改进风传播植物的种群动态模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Letting go with the flow: directional abscission of dandelion seeds.

Seed dispersal through wind was historically considered a random process; however, plants can influence their dispersal through non-random seed detachment or abscission. Dandelion seeds facing the wind tend to abscise before those facing downwind, yet the mechanism that supports this has remained unclear. We measured the force needed for abscission in different directions and performed imaging of the detachment process. This revealed an asymmetry in the seed attachment morphology, which results in massive differences in the abscission force needed relative to the direction. We developed a mechanistic model to explain this directional bias and identified morphological factors that determine the properties of seed abscission. This discovery highlights plant adaptations that shape the seed dispersal profile to enhance reproductive success and can be used to improve population dynamic models of wind-dispersed plants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The Royal Society Interface
Journal of The Royal Society Interface 综合性期刊-综合性期刊
CiteScore
7.10
自引率
2.60%
发文量
234
审稿时长
2.5 months
期刊介绍: J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信