Ian Eames, Anne Symons, Duncan Wilson, Yaman Rawas Kalaji, Lyndsay Muirhead, Jonathan Groome
{"title":"面向医院手术室的NetZero。","authors":"Ian Eames, Anne Symons, Duncan Wilson, Yaman Rawas Kalaji, Lyndsay Muirhead, Jonathan Groome","doi":"10.1098/rsif.2025.0048","DOIUrl":null,"url":null,"abstract":"<p><p>Hospital operating theatre suites are a particularly resource- and energy-intensive component of the health sector. Reducing their carbon footprint presents a significant challenge due to the necessity of maintaining patient safety. In this paper, we apply a multidisciplinary methodology to investigate and assess various strategies aimed at reducing the carbon footprint in hospital theatres. The strategies evaluated include (i) the duration of theatre ventilation operation, (ii) the efficiency of the ventilation strategy, and (iii) heat recovery systems and technologies. These approaches are assessed using a combination of theatre space monitoring (via building management systems), computational air-flow modelling and mathematical models. We develop a robust methodology that applies these modelling techniques to general hospital suites, enabling the estimation of reductions in CO<sub>2</sub> equivalent.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 230","pages":"20250048"},"PeriodicalIF":3.5000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12419882/pdf/","citationCount":"0","resultStr":"{\"title\":\"Towards NetZero for hospital operating theatres.\",\"authors\":\"Ian Eames, Anne Symons, Duncan Wilson, Yaman Rawas Kalaji, Lyndsay Muirhead, Jonathan Groome\",\"doi\":\"10.1098/rsif.2025.0048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hospital operating theatre suites are a particularly resource- and energy-intensive component of the health sector. Reducing their carbon footprint presents a significant challenge due to the necessity of maintaining patient safety. In this paper, we apply a multidisciplinary methodology to investigate and assess various strategies aimed at reducing the carbon footprint in hospital theatres. The strategies evaluated include (i) the duration of theatre ventilation operation, (ii) the efficiency of the ventilation strategy, and (iii) heat recovery systems and technologies. These approaches are assessed using a combination of theatre space monitoring (via building management systems), computational air-flow modelling and mathematical models. We develop a robust methodology that applies these modelling techniques to general hospital suites, enabling the estimation of reductions in CO<sub>2</sub> equivalent.</p>\",\"PeriodicalId\":17488,\"journal\":{\"name\":\"Journal of The Royal Society Interface\",\"volume\":\"22 230\",\"pages\":\"20250048\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12419882/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Royal Society Interface\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsif.2025.0048\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2025.0048","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Hospital operating theatre suites are a particularly resource- and energy-intensive component of the health sector. Reducing their carbon footprint presents a significant challenge due to the necessity of maintaining patient safety. In this paper, we apply a multidisciplinary methodology to investigate and assess various strategies aimed at reducing the carbon footprint in hospital theatres. The strategies evaluated include (i) the duration of theatre ventilation operation, (ii) the efficiency of the ventilation strategy, and (iii) heat recovery systems and technologies. These approaches are assessed using a combination of theatre space monitoring (via building management systems), computational air-flow modelling and mathematical models. We develop a robust methodology that applies these modelling techniques to general hospital suites, enabling the estimation of reductions in CO2 equivalent.
期刊介绍:
J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.