Hengjian Du, Xin Dai, Ting Zhang, Zhao Zhang, XiaoTao Xu, YaoXia Liu, Zhen Fan
{"title":"多组学和临床验证鉴定关键糖酵解和免疫相关基因败血症。","authors":"Hengjian Du, Xin Dai, Ting Zhang, Zhao Zhang, XiaoTao Xu, YaoXia Liu, Zhen Fan","doi":"10.2147/IJGM.S539158","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Sepsis is characterized by profound immune and metabolic perturbations, with glycolysis serving as a pivotal modulator of immune responses. However, the molecular mechanisms linking glycolytic reprogramming to immune dysfunction remain poorly defined.</p><p><strong>Methods: </strong>Transcriptomic profiles of sepsis were obtained from the Gene Expression Omnibus. Differentially expressed genes (DEGs) related to glycolysis were identified through a combination of ssGSEA, WGCNA and differential expression analysis. Hub genes were prioritized using Mendelian randomization and machine learning algorithms (LASSO, SVM-RFE, and Boruta), and validated in an independent dataset and by RT-qPCR in a clinical sepsis cohort. Immune cell infiltration was assessed using CIBERSORT to profile the immune landscape, and single-cell RNA sequencing (scRNA-seq) was employed to delineate the cell type-specific transcriptional profiles.</p><p><strong>Results: </strong>The ssGSEA scores derived from the glycolysis signature indicated a marked reduction in glycolytic activity associated with sepsis. By employing an integrative framework that includes WGCNA, differential expression analysis, Mendelian randomization, and machine learning algorithms, this study successfully identified five pivotal genes associated with glycolysis: DDX18, EIF3L, MAK16, THUMPD1, and ZNF260. The diminished expression of these genes was significantly correlated with immune remodeling, characterized by an increase in neutrophils and a decrease in lymphocytes. In a clinical sepsis cohort, RT-qPCR of peripheral blood, in conjunction with routine hematological profiling, validated their expression pattern and immune associations. Moreover, scRNA-seq facilitated a comprehensive characterization of these transcriptional alterations within distinct subsets of immune cells.</p><p><strong>Conclusion: </strong>This study identifies five glycolysis-related genes linked to immune remodeling in sepsis, revealing a metabolic-immune axis that may drives disease pathogenesis and offers promising targets for therapeutic intervention.</p>","PeriodicalId":14131,"journal":{"name":"International Journal of General Medicine","volume":"18 ","pages":"5085-5103"},"PeriodicalIF":2.0000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12415118/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multi-Omics and Clinical Validation Identify Key Glycolysis- and Immune-Related Genes in Sepsis.\",\"authors\":\"Hengjian Du, Xin Dai, Ting Zhang, Zhao Zhang, XiaoTao Xu, YaoXia Liu, Zhen Fan\",\"doi\":\"10.2147/IJGM.S539158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Sepsis is characterized by profound immune and metabolic perturbations, with glycolysis serving as a pivotal modulator of immune responses. However, the molecular mechanisms linking glycolytic reprogramming to immune dysfunction remain poorly defined.</p><p><strong>Methods: </strong>Transcriptomic profiles of sepsis were obtained from the Gene Expression Omnibus. Differentially expressed genes (DEGs) related to glycolysis were identified through a combination of ssGSEA, WGCNA and differential expression analysis. Hub genes were prioritized using Mendelian randomization and machine learning algorithms (LASSO, SVM-RFE, and Boruta), and validated in an independent dataset and by RT-qPCR in a clinical sepsis cohort. Immune cell infiltration was assessed using CIBERSORT to profile the immune landscape, and single-cell RNA sequencing (scRNA-seq) was employed to delineate the cell type-specific transcriptional profiles.</p><p><strong>Results: </strong>The ssGSEA scores derived from the glycolysis signature indicated a marked reduction in glycolytic activity associated with sepsis. By employing an integrative framework that includes WGCNA, differential expression analysis, Mendelian randomization, and machine learning algorithms, this study successfully identified five pivotal genes associated with glycolysis: DDX18, EIF3L, MAK16, THUMPD1, and ZNF260. The diminished expression of these genes was significantly correlated with immune remodeling, characterized by an increase in neutrophils and a decrease in lymphocytes. In a clinical sepsis cohort, RT-qPCR of peripheral blood, in conjunction with routine hematological profiling, validated their expression pattern and immune associations. Moreover, scRNA-seq facilitated a comprehensive characterization of these transcriptional alterations within distinct subsets of immune cells.</p><p><strong>Conclusion: </strong>This study identifies five glycolysis-related genes linked to immune remodeling in sepsis, revealing a metabolic-immune axis that may drives disease pathogenesis and offers promising targets for therapeutic intervention.</p>\",\"PeriodicalId\":14131,\"journal\":{\"name\":\"International Journal of General Medicine\",\"volume\":\"18 \",\"pages\":\"5085-5103\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12415118/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of General Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/IJGM.S539158\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of General Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/IJGM.S539158","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Multi-Omics and Clinical Validation Identify Key Glycolysis- and Immune-Related Genes in Sepsis.
Background: Sepsis is characterized by profound immune and metabolic perturbations, with glycolysis serving as a pivotal modulator of immune responses. However, the molecular mechanisms linking glycolytic reprogramming to immune dysfunction remain poorly defined.
Methods: Transcriptomic profiles of sepsis were obtained from the Gene Expression Omnibus. Differentially expressed genes (DEGs) related to glycolysis were identified through a combination of ssGSEA, WGCNA and differential expression analysis. Hub genes were prioritized using Mendelian randomization and machine learning algorithms (LASSO, SVM-RFE, and Boruta), and validated in an independent dataset and by RT-qPCR in a clinical sepsis cohort. Immune cell infiltration was assessed using CIBERSORT to profile the immune landscape, and single-cell RNA sequencing (scRNA-seq) was employed to delineate the cell type-specific transcriptional profiles.
Results: The ssGSEA scores derived from the glycolysis signature indicated a marked reduction in glycolytic activity associated with sepsis. By employing an integrative framework that includes WGCNA, differential expression analysis, Mendelian randomization, and machine learning algorithms, this study successfully identified five pivotal genes associated with glycolysis: DDX18, EIF3L, MAK16, THUMPD1, and ZNF260. The diminished expression of these genes was significantly correlated with immune remodeling, characterized by an increase in neutrophils and a decrease in lymphocytes. In a clinical sepsis cohort, RT-qPCR of peripheral blood, in conjunction with routine hematological profiling, validated their expression pattern and immune associations. Moreover, scRNA-seq facilitated a comprehensive characterization of these transcriptional alterations within distinct subsets of immune cells.
Conclusion: This study identifies five glycolysis-related genes linked to immune remodeling in sepsis, revealing a metabolic-immune axis that may drives disease pathogenesis and offers promising targets for therapeutic intervention.
期刊介绍:
The International Journal of General Medicine is an international, peer-reviewed, open access journal that focuses on general and internal medicine, pathogenesis, epidemiology, diagnosis, monitoring and treatment protocols. The journal is characterized by the rapid reporting of reviews, original research and clinical studies across all disease areas.
A key focus of the journal is the elucidation of disease processes and management protocols resulting in improved outcomes for the patient. Patient perspectives such as satisfaction, quality of life, health literacy and communication and their role in developing new healthcare programs and optimizing clinical outcomes are major areas of interest for the journal.
As of 1st April 2019, the International Journal of General Medicine will no longer consider meta-analyses for publication.