贝叶斯疾病制图模型的空间差中差。

IF 4.4 2区 医学 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Carl Bonander, Marta Blangiardo, Ulf Strömberg
{"title":"贝叶斯疾病制图模型的空间差中差。","authors":"Carl Bonander, Marta Blangiardo, Ulf Strömberg","doi":"10.1097/EDE.0000000000001912","DOIUrl":null,"url":null,"abstract":"<p><p>Bayesian disease-mapping models are widely used in small-area epidemiology to account for spatial correlation and stabilize estimates through spatial smoothing. In contrast, difference-in-differences (DID) methods-commonly used to estimate treatment effects from observational panel data-typically ignore spatial dependence. This paper integrates disease mapping models into an imputation-based DID framework to address spatially structured residual variation and improve precision in small-area evaluations. The approach builds on recent advances in causal panel data methods, including two-way Mundlak estimation, to enable causal identification equivalent to fixed effects DID while incorporating spatiotemporal random effects. We implement the method using Integrated Nested Laplace Approximation, which supports flexible spatial and temporal structures and efficient Bayesian computation. Simulations show that, when the spatiotemporal structure is correctly specified, the approach improves precision and interval coverage compared to standard DID methods. We illustrate the method by evaluating local ice cleat distribution programs in Swedish municipalities.</p>","PeriodicalId":11779,"journal":{"name":"Epidemiology","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial Difference-in-Differences with Bayesian Disease Mapping Models.\",\"authors\":\"Carl Bonander, Marta Blangiardo, Ulf Strömberg\",\"doi\":\"10.1097/EDE.0000000000001912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bayesian disease-mapping models are widely used in small-area epidemiology to account for spatial correlation and stabilize estimates through spatial smoothing. In contrast, difference-in-differences (DID) methods-commonly used to estimate treatment effects from observational panel data-typically ignore spatial dependence. This paper integrates disease mapping models into an imputation-based DID framework to address spatially structured residual variation and improve precision in small-area evaluations. The approach builds on recent advances in causal panel data methods, including two-way Mundlak estimation, to enable causal identification equivalent to fixed effects DID while incorporating spatiotemporal random effects. We implement the method using Integrated Nested Laplace Approximation, which supports flexible spatial and temporal structures and efficient Bayesian computation. Simulations show that, when the spatiotemporal structure is correctly specified, the approach improves precision and interval coverage compared to standard DID methods. We illustrate the method by evaluating local ice cleat distribution programs in Swedish municipalities.</p>\",\"PeriodicalId\":11779,\"journal\":{\"name\":\"Epidemiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epidemiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/EDE.0000000000001912\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/EDE.0000000000001912","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

摘要

贝叶斯疾病作图模型被广泛应用于小区域流行病学中,以解释空间相关性并通过空间平滑来稳定估计。相比之下,差分法(DID)——通常用于从观察面板数据估计治疗效果——通常忽略了空间依赖性。本文将疾病映射模型集成到基于假设的DID框架中,以解决空间结构的残差变化,提高小区域评估的精度。该方法建立在因果面板数据方法(包括双向Mundlak估计)的最新进展的基础上,使因果识别等同于固定效应DID,同时结合时空随机效应。我们使用集成嵌套拉普拉斯近似实现该方法,该方法支持灵活的时空结构和高效的贝叶斯计算。仿真结果表明,在正确指定时空结构的情况下,与标准DID方法相比,该方法提高了精度和区间覆盖率。我们通过评估瑞典市政当局的当地清冰分配方案来说明这种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial Difference-in-Differences with Bayesian Disease Mapping Models.

Bayesian disease-mapping models are widely used in small-area epidemiology to account for spatial correlation and stabilize estimates through spatial smoothing. In contrast, difference-in-differences (DID) methods-commonly used to estimate treatment effects from observational panel data-typically ignore spatial dependence. This paper integrates disease mapping models into an imputation-based DID framework to address spatially structured residual variation and improve precision in small-area evaluations. The approach builds on recent advances in causal panel data methods, including two-way Mundlak estimation, to enable causal identification equivalent to fixed effects DID while incorporating spatiotemporal random effects. We implement the method using Integrated Nested Laplace Approximation, which supports flexible spatial and temporal structures and efficient Bayesian computation. Simulations show that, when the spatiotemporal structure is correctly specified, the approach improves precision and interval coverage compared to standard DID methods. We illustrate the method by evaluating local ice cleat distribution programs in Swedish municipalities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Epidemiology
Epidemiology 医学-公共卫生、环境卫生与职业卫生
CiteScore
6.70
自引率
3.70%
发文量
177
审稿时长
6-12 weeks
期刊介绍: Epidemiology publishes original research from all fields of epidemiology. The journal also welcomes review articles and meta-analyses, novel hypotheses, descriptions and applications of new methods, and discussions of research theory or public health policy. We give special consideration to papers from developing countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信