钙离子在膜接触部位的通量。

IF 8.4 2区 生物学 Q1 CELL BIOLOGY
Lucia Barazzuol, Marisa Brini, Tito Calì
{"title":"钙离子在膜接触部位的通量。","authors":"Lucia Barazzuol, Marisa Brini, Tito Calì","doi":"10.1101/cshperspect.a041765","DOIUrl":null,"url":null,"abstract":"<p><p>The calcium ion (Ca<sup>2+</sup>) is a pivotal second messenger orchestrating diverse cellular functions, including metabolism, signaling, and apoptosis. Membrane contact sites (MCSs) are critical hubs for Ca<sup>2+</sup> exchange, enabling rapid and localized signaling across cell compartments. Well-characterized interfaces, such as those between the endoplasmic reticulum (ER) and mitochondria and ER-plasma membrane (PM), mediate Ca<sup>2+</sup> flux through specialized channels. Less understood, yet significant, contacts involving Golgi, lysosomes, peroxisomes, and the nucleus further expand the landscape of intracellular Ca<sup>2+</sup> signaling. These organelles are engaged in Ca<sup>2+</sup> homeostasis mainly through their MCS, but the molecular players and the mechanisms regulating the process of Ca<sup>2+</sup> transfer remain incompletely elucidated. This review provides a comprehensive overview of Ca<sup>2+</sup> signaling across diverse MCS, emphasizing understudied organelles and the need for further investigation to uncover novel therapeutic opportunities.</p>","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":" ","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ca<sup>2+</sup> Fluxes across Membrane Contact Sites.\",\"authors\":\"Lucia Barazzuol, Marisa Brini, Tito Calì\",\"doi\":\"10.1101/cshperspect.a041765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The calcium ion (Ca<sup>2+</sup>) is a pivotal second messenger orchestrating diverse cellular functions, including metabolism, signaling, and apoptosis. Membrane contact sites (MCSs) are critical hubs for Ca<sup>2+</sup> exchange, enabling rapid and localized signaling across cell compartments. Well-characterized interfaces, such as those between the endoplasmic reticulum (ER) and mitochondria and ER-plasma membrane (PM), mediate Ca<sup>2+</sup> flux through specialized channels. Less understood, yet significant, contacts involving Golgi, lysosomes, peroxisomes, and the nucleus further expand the landscape of intracellular Ca<sup>2+</sup> signaling. These organelles are engaged in Ca<sup>2+</sup> homeostasis mainly through their MCS, but the molecular players and the mechanisms regulating the process of Ca<sup>2+</sup> transfer remain incompletely elucidated. This review provides a comprehensive overview of Ca<sup>2+</sup> signaling across diverse MCS, emphasizing understudied organelles and the need for further investigation to uncover novel therapeutic opportunities.</p>\",\"PeriodicalId\":10494,\"journal\":{\"name\":\"Cold Spring Harbor perspectives in biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cold Spring Harbor perspectives in biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1101/cshperspect.a041765\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor perspectives in biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/cshperspect.a041765","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

钙离子(Ca2+)是协调多种细胞功能的关键第二信使,包括代谢,信号传导和凋亡。膜接触位点(MCSs)是Ca2+交换的关键枢纽,可以实现快速和局部的细胞间信号传导。表征良好的界面,如内质网(ER)与线粒体和内质网质膜(PM)之间的界面,通过专门的通道介导Ca2+通量。鲜为人知的是,涉及高尔基体、溶酶体、过氧化物酶体和细胞核的接触进一步扩大了细胞内Ca2+信号传导的范围。这些细胞器主要通过其MCS参与Ca2+稳态,但调控Ca2+转移过程的分子参与者和机制尚未完全阐明。这篇综述提供了Ca2+信号在不同MCS的全面概述,强调未充分研究的细胞器和需要进一步研究以发现新的治疗机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ca2+ Fluxes across Membrane Contact Sites.

The calcium ion (Ca2+) is a pivotal second messenger orchestrating diverse cellular functions, including metabolism, signaling, and apoptosis. Membrane contact sites (MCSs) are critical hubs for Ca2+ exchange, enabling rapid and localized signaling across cell compartments. Well-characterized interfaces, such as those between the endoplasmic reticulum (ER) and mitochondria and ER-plasma membrane (PM), mediate Ca2+ flux through specialized channels. Less understood, yet significant, contacts involving Golgi, lysosomes, peroxisomes, and the nucleus further expand the landscape of intracellular Ca2+ signaling. These organelles are engaged in Ca2+ homeostasis mainly through their MCS, but the molecular players and the mechanisms regulating the process of Ca2+ transfer remain incompletely elucidated. This review provides a comprehensive overview of Ca2+ signaling across diverse MCS, emphasizing understudied organelles and the need for further investigation to uncover novel therapeutic opportunities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
15.00
自引率
1.40%
发文量
56
审稿时长
3-8 weeks
期刊介绍: Cold Spring Harbor Perspectives in Biology offers a comprehensive platform in the molecular life sciences, featuring reviews that span molecular, cell, and developmental biology, genetics, neuroscience, immunology, cancer biology, and molecular pathology. This online publication provides in-depth insights into various topics, making it a valuable resource for those engaged in diverse aspects of biological research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信