通过USP18异肽酶失活增强isg酰化不能减轻柯萨奇病毒b3诱导的心肌炎的炎症或功能过程

IF 2 Q3 CELL BIOLOGY
Nicolas Kelm, Meike Kespohl, Sophia Borowski, Sarah Ochs, Klaus-Peter Knobeloch, Lisa Gerarda Maria Huis In 't Veld, Karin Klingel, Antje Beling
{"title":"通过USP18异肽酶失活增强isg酰化不能减轻柯萨奇病毒b3诱导的心肌炎的炎症或功能过程","authors":"Nicolas Kelm, Meike Kespohl, Sophia Borowski, Sarah Ochs, Klaus-Peter Knobeloch, Lisa Gerarda Maria Huis In 't Veld, Karin Klingel, Antje Beling","doi":"10.33594/000000811","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aims: </strong>The ubiquitin-like protein ISG15 and its covalent conjugation to substrates (ISGylation) represent a critical interferon (IFN)-induced antiviral mechanism. USP18 is an ISG15-specific isopeptidase and a key negative regulator of type I IFN signaling. While inactivation of USP18's catalytic activity enhances ISGylation and promotes viral resistance, its role in modulating inflammation and cardiac function during CVB3-induced myocarditis remains unclear. This study aimed to determine whether selective inactivation of USP18 isopeptidase activity influences the inflammatory and functional course of viral myocarditis.</p><p><strong>Methods: </strong>Usp18 C61A/C61A knock-in mice, which lack USP18 isopeptidase activity but retain IFN regulatory function, were used on both C57BL/6 and A/J backgrounds. Mice were infected with the cardiotropic CVB3-Nancy strain, and disease progression was assessed through virological, histological, immunological, and echocardiographic analyses. Immune cell infiltration was quantified by flow cytometry, and ISGylation was assessed by immunoblotting.</p><p><strong>Results: </strong>Despite enhanced ISGylation, Usp18 C61A/C61A mice did not exhibit altered cardiac viral titers or inflammation compared to wild-type controls. Histological scores and immune cell composition in the heart were similar between genotypes in both C57BL/6 and A/J backgrounds. Echocardiography confirmed functional impairment following CVB3 infection but revealed no significant genotype-dependent differences in cardiac performance. Inflammatory cytokine expression was largely unaffected by enhanced ISGylation, with only minor differences observed.</p><p><strong>Conclusion: </strong>While ISGylation is critical for antiviral protection in CVB3 infection, selective inactivation of USP18 isopeptidase activity does not mitigate myocardial inflammation or dysfunction during established CVB3 myocarditis. These findings suggest that therapeutic enhancement of ISGylation alone may be insufficient to control inflammation-driven cardiac damage in this model.</p>","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":"59 S3","pages":"1-21"},"PeriodicalIF":2.0000,"publicationDate":"2025-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced ISGylation via USP18 Isopeptidase Inactivation Fails to Mitigate the Inflammatory or Functional Course of Coxsackievirus B3-Induced Myocarditis.\",\"authors\":\"Nicolas Kelm, Meike Kespohl, Sophia Borowski, Sarah Ochs, Klaus-Peter Knobeloch, Lisa Gerarda Maria Huis In 't Veld, Karin Klingel, Antje Beling\",\"doi\":\"10.33594/000000811\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background/aims: </strong>The ubiquitin-like protein ISG15 and its covalent conjugation to substrates (ISGylation) represent a critical interferon (IFN)-induced antiviral mechanism. USP18 is an ISG15-specific isopeptidase and a key negative regulator of type I IFN signaling. While inactivation of USP18's catalytic activity enhances ISGylation and promotes viral resistance, its role in modulating inflammation and cardiac function during CVB3-induced myocarditis remains unclear. This study aimed to determine whether selective inactivation of USP18 isopeptidase activity influences the inflammatory and functional course of viral myocarditis.</p><p><strong>Methods: </strong>Usp18 C61A/C61A knock-in mice, which lack USP18 isopeptidase activity but retain IFN regulatory function, were used on both C57BL/6 and A/J backgrounds. Mice were infected with the cardiotropic CVB3-Nancy strain, and disease progression was assessed through virological, histological, immunological, and echocardiographic analyses. Immune cell infiltration was quantified by flow cytometry, and ISGylation was assessed by immunoblotting.</p><p><strong>Results: </strong>Despite enhanced ISGylation, Usp18 C61A/C61A mice did not exhibit altered cardiac viral titers or inflammation compared to wild-type controls. Histological scores and immune cell composition in the heart were similar between genotypes in both C57BL/6 and A/J backgrounds. Echocardiography confirmed functional impairment following CVB3 infection but revealed no significant genotype-dependent differences in cardiac performance. Inflammatory cytokine expression was largely unaffected by enhanced ISGylation, with only minor differences observed.</p><p><strong>Conclusion: </strong>While ISGylation is critical for antiviral protection in CVB3 infection, selective inactivation of USP18 isopeptidase activity does not mitigate myocardial inflammation or dysfunction during established CVB3 myocarditis. These findings suggest that therapeutic enhancement of ISGylation alone may be insufficient to control inflammation-driven cardiac damage in this model.</p>\",\"PeriodicalId\":9845,\"journal\":{\"name\":\"Cellular Physiology and Biochemistry\",\"volume\":\"59 S3\",\"pages\":\"1-21\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular Physiology and Biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33594/000000811\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Physiology and Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33594/000000811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景/目的:泛素样蛋白ISG15及其与底物的共价结合(isg酰化)代表了干扰素(IFN)诱导的关键抗病毒机制。USP18是isg15特异性异肽酶,是I型IFN信号传导的关键负调控因子。虽然USP18的催化活性失活可增强isg酰化并促进病毒抗性,但其在cvb3诱导的心肌炎中调节炎症和心功能的作用尚不清楚。本研究旨在确定USP18异肽酶活性的选择性失活是否影响病毒性心肌炎的炎症和功能过程。方法:将缺乏Usp18异肽酶活性但保留IFN调节功能的Usp18 C61A/C61A敲入小鼠用于C57BL/6和A/J背景。小鼠感染致心性CVB3-Nancy菌株,通过病毒学、组织学、免疫学和超声心动图分析评估疾病进展。流式细胞术检测免疫细胞浸润,免疫印迹法检测isg酰化。结果:尽管isg酰化增强,与野生型对照相比,Usp18 C61A/C61A小鼠没有表现出心脏病毒滴度或炎症的改变。C57BL/6和A/J基因型的心脏组织评分和免疫细胞组成相似。超声心动图证实CVB3感染后的功能损害,但显示心脏功能没有明显的基因型依赖性差异。炎性细胞因子的表达在很大程度上不受isg酰化增强的影响,仅观察到微小的差异。结论:虽然isg酰化对CVB3感染的抗病毒保护至关重要,但USP18异肽酶活性的选择性失活并不能减轻已建立的CVB3心肌炎期间的心肌炎症或功能障碍。这些发现表明,在该模型中,仅通过增强isg酰化治疗可能不足以控制炎症驱动的心脏损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced ISGylation via USP18 Isopeptidase Inactivation Fails to Mitigate the Inflammatory or Functional Course of Coxsackievirus B3-Induced Myocarditis.

Background/aims: The ubiquitin-like protein ISG15 and its covalent conjugation to substrates (ISGylation) represent a critical interferon (IFN)-induced antiviral mechanism. USP18 is an ISG15-specific isopeptidase and a key negative regulator of type I IFN signaling. While inactivation of USP18's catalytic activity enhances ISGylation and promotes viral resistance, its role in modulating inflammation and cardiac function during CVB3-induced myocarditis remains unclear. This study aimed to determine whether selective inactivation of USP18 isopeptidase activity influences the inflammatory and functional course of viral myocarditis.

Methods: Usp18 C61A/C61A knock-in mice, which lack USP18 isopeptidase activity but retain IFN regulatory function, were used on both C57BL/6 and A/J backgrounds. Mice were infected with the cardiotropic CVB3-Nancy strain, and disease progression was assessed through virological, histological, immunological, and echocardiographic analyses. Immune cell infiltration was quantified by flow cytometry, and ISGylation was assessed by immunoblotting.

Results: Despite enhanced ISGylation, Usp18 C61A/C61A mice did not exhibit altered cardiac viral titers or inflammation compared to wild-type controls. Histological scores and immune cell composition in the heart were similar between genotypes in both C57BL/6 and A/J backgrounds. Echocardiography confirmed functional impairment following CVB3 infection but revealed no significant genotype-dependent differences in cardiac performance. Inflammatory cytokine expression was largely unaffected by enhanced ISGylation, with only minor differences observed.

Conclusion: While ISGylation is critical for antiviral protection in CVB3 infection, selective inactivation of USP18 isopeptidase activity does not mitigate myocardial inflammation or dysfunction during established CVB3 myocarditis. These findings suggest that therapeutic enhancement of ISGylation alone may be insufficient to control inflammation-driven cardiac damage in this model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
0.00%
发文量
86
审稿时长
1 months
期刊介绍: Cellular Physiology and Biochemistry is a multidisciplinary scientific forum dedicated to advancing the frontiers of basic cellular research. It addresses scientists from both the physiological and biochemical disciplines as well as related fields such as genetics, molecular biology, pathophysiology, pathobiochemistry and cellular toxicology & pharmacology. Original papers and reviews on the mechanisms of intracellular transmission, cellular metabolism, cell growth, differentiation and death, ion channels and carriers, and the maintenance, regulation and disturbances of cell volume are presented. Appearing monthly under peer review, Cellular Physiology and Biochemistry takes an active role in the concerted international effort to unravel the mechanisms of cellular function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信