Sabrina Friebe, Solveig Weigel, Mike Francke, Stefan G Mayr
{"title":"血管化猪视网膜离体在纳米管支架上的器官型培养。","authors":"Sabrina Friebe, Solveig Weigel, Mike Francke, Stefan G Mayr","doi":"10.1186/s12575-025-00301-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Organotypic long-term cultivation of vascularized retina explants is a major challenge for application in drug development, drug screening, diagnostics and future personalized medicine. With this background, an assay and protocol for organotypic culture of vascularized retina explants in vitro with optimum tissue integrity preservation is developed and demonstrated.</p><p><strong>Methods: </strong>Morphological, histologic and biochemical integrity as well as viability of vascularized retina explants are compared as function of cultivation time for differently structured nanotube scaffolds. In doing so, porcine retina explants obtained from a local slaughterhouse are employed as paradigm for vascularized retina.</p><p><strong>Conclusions: </strong>We demonstrate that titania nanotube arrays are highly promising as culturing scaffold of vascularized retina explants in vitro due to highly tunable surface properties regarding biomedical signaling. The unprecedented maintenance of tissue integrity allows for screening of pharmacological drugs and disease mechanisms in an ex-vivo test-based culture system with reduced need for animal experiments.</p>","PeriodicalId":8960,"journal":{"name":"Biological Procedures Online","volume":"27 1","pages":"35"},"PeriodicalIF":4.3000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12418674/pdf/","citationCount":"0","resultStr":"{\"title\":\"Organotypic Culture of Adult Vascularized Porcine Retina Explants In Vitro on Nanotube Scaffolds.\",\"authors\":\"Sabrina Friebe, Solveig Weigel, Mike Francke, Stefan G Mayr\",\"doi\":\"10.1186/s12575-025-00301-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Organotypic long-term cultivation of vascularized retina explants is a major challenge for application in drug development, drug screening, diagnostics and future personalized medicine. With this background, an assay and protocol for organotypic culture of vascularized retina explants in vitro with optimum tissue integrity preservation is developed and demonstrated.</p><p><strong>Methods: </strong>Morphological, histologic and biochemical integrity as well as viability of vascularized retina explants are compared as function of cultivation time for differently structured nanotube scaffolds. In doing so, porcine retina explants obtained from a local slaughterhouse are employed as paradigm for vascularized retina.</p><p><strong>Conclusions: </strong>We demonstrate that titania nanotube arrays are highly promising as culturing scaffold of vascularized retina explants in vitro due to highly tunable surface properties regarding biomedical signaling. The unprecedented maintenance of tissue integrity allows for screening of pharmacological drugs and disease mechanisms in an ex-vivo test-based culture system with reduced need for animal experiments.</p>\",\"PeriodicalId\":8960,\"journal\":{\"name\":\"Biological Procedures Online\",\"volume\":\"27 1\",\"pages\":\"35\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12418674/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Procedures Online\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12575-025-00301-5\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Procedures Online","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12575-025-00301-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Organotypic Culture of Adult Vascularized Porcine Retina Explants In Vitro on Nanotube Scaffolds.
Background: Organotypic long-term cultivation of vascularized retina explants is a major challenge for application in drug development, drug screening, diagnostics and future personalized medicine. With this background, an assay and protocol for organotypic culture of vascularized retina explants in vitro with optimum tissue integrity preservation is developed and demonstrated.
Methods: Morphological, histologic and biochemical integrity as well as viability of vascularized retina explants are compared as function of cultivation time for differently structured nanotube scaffolds. In doing so, porcine retina explants obtained from a local slaughterhouse are employed as paradigm for vascularized retina.
Conclusions: We demonstrate that titania nanotube arrays are highly promising as culturing scaffold of vascularized retina explants in vitro due to highly tunable surface properties regarding biomedical signaling. The unprecedented maintenance of tissue integrity allows for screening of pharmacological drugs and disease mechanisms in an ex-vivo test-based culture system with reduced need for animal experiments.
期刊介绍:
iological Procedures Online publishes articles that improve access to techniques and methods in the medical and biological sciences.
We are also interested in short but important research discoveries, such as new animal disease models.
Topics of interest include, but are not limited to:
Reports of new research techniques and applications of existing techniques
Technical analyses of research techniques and published reports
Validity analyses of research methods and approaches to judging the validity of research reports
Application of common research methods
Reviews of existing techniques
Novel/important product information
Biological Procedures Online places emphasis on multidisciplinary approaches that integrate methodologies from medicine, biology, chemistry, imaging, engineering, bioinformatics, computer science, and systems analysis.