立体选择性1,1'-糖基化的方法。

IF 2.1 4区 化学 Q2 CHEMISTRY, ORGANIC
Beilstein Journal of Organic Chemistry Pub Date : 2025-08-27 eCollection Date: 2025-01-01 DOI:10.3762/bjoc.21.133
Daniele Zucchetta, Alla Zamyatina
{"title":"立体选择性1,1'-糖基化的方法。","authors":"Daniele Zucchetta, Alla Zamyatina","doi":"10.3762/bjoc.21.133","DOIUrl":null,"url":null,"abstract":"<p><p>Nonreducing disaccharides are prevalent in non-mammalian glycans and glycolipids, serving as pivotal structural components in mycobacterial glycans, microbial oligosaccharide and nucleoside antibiotics, as well as biologically active mimetics of bacterial pathogen-associated molecular patterns (PAMPs). As integral components of PAMPs, 1,1'-linked disaccharide-containing biomolecules play important roles in host-pathogen interactions, cellular signaling, and pathogenesis. Accessing complex biomolecules containing nonreducing disaccharides is often hindered by difficulties in isolating them from natural sources, which can result in impure or degraded products, particularly when sensitive functional groups are involved. Consequently, approaches to 1,1'-glycosylation for the synthesis of nonreducing disaccharides with defined anomeric configurations are essential for the development of 1,1'-disaccharide-containing biomolecules used in vaccine research, as well as for therapeutic and diagnostic applications. The assembly of nonreducing 1,1'-linked disaccharides presents greater challenges than conventional chemical glycosylation due to the need for simultaneous control of stereochemistry at two anomeric centers. The structural complexity of natural biomolecules entailing 1,1'-disaccharides, which feature asymmetrically distributed functional groups across their two pyranose rings, emphasizes the importance of robust, stereoselective synthetic strategies capable of producing fully orthogonally protected 1,1'-linked sugars suitable for selective chemical modification. This review highlights recent advances in 1,1'-glycosylation and provides an overview of selected glycosylation strategies, including those aimed at forming α,β-, β,β-, and α,α-1,1'-glycosidic linkages. Particular emphasis is placed on the challenges of achieving stereoselectivity with lactol glycosyl acceptors, which commonly exist as mixtures of anomers and are therefore problematic to use in chemical glycosylation reactions.</p>","PeriodicalId":8756,"journal":{"name":"Beilstein Journal of Organic Chemistry","volume":"21 ","pages":"1700-1718"},"PeriodicalIF":2.1000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12415924/pdf/","citationCount":"0","resultStr":"{\"title\":\"Approaches to stereoselective 1,1'-glycosylation.\",\"authors\":\"Daniele Zucchetta, Alla Zamyatina\",\"doi\":\"10.3762/bjoc.21.133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nonreducing disaccharides are prevalent in non-mammalian glycans and glycolipids, serving as pivotal structural components in mycobacterial glycans, microbial oligosaccharide and nucleoside antibiotics, as well as biologically active mimetics of bacterial pathogen-associated molecular patterns (PAMPs). As integral components of PAMPs, 1,1'-linked disaccharide-containing biomolecules play important roles in host-pathogen interactions, cellular signaling, and pathogenesis. Accessing complex biomolecules containing nonreducing disaccharides is often hindered by difficulties in isolating them from natural sources, which can result in impure or degraded products, particularly when sensitive functional groups are involved. Consequently, approaches to 1,1'-glycosylation for the synthesis of nonreducing disaccharides with defined anomeric configurations are essential for the development of 1,1'-disaccharide-containing biomolecules used in vaccine research, as well as for therapeutic and diagnostic applications. The assembly of nonreducing 1,1'-linked disaccharides presents greater challenges than conventional chemical glycosylation due to the need for simultaneous control of stereochemistry at two anomeric centers. The structural complexity of natural biomolecules entailing 1,1'-disaccharides, which feature asymmetrically distributed functional groups across their two pyranose rings, emphasizes the importance of robust, stereoselective synthetic strategies capable of producing fully orthogonally protected 1,1'-linked sugars suitable for selective chemical modification. This review highlights recent advances in 1,1'-glycosylation and provides an overview of selected glycosylation strategies, including those aimed at forming α,β-, β,β-, and α,α-1,1'-glycosidic linkages. Particular emphasis is placed on the challenges of achieving stereoselectivity with lactol glycosyl acceptors, which commonly exist as mixtures of anomers and are therefore problematic to use in chemical glycosylation reactions.</p>\",\"PeriodicalId\":8756,\"journal\":{\"name\":\"Beilstein Journal of Organic Chemistry\",\"volume\":\"21 \",\"pages\":\"1700-1718\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12415924/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Beilstein Journal of Organic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3762/bjoc.21.133\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beilstein Journal of Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3762/bjoc.21.133","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

摘要

非还原性双糖普遍存在于非哺乳动物聚糖和糖脂中,是分枝杆菌聚糖、微生物寡糖和核苷类抗生素的关键结构成分,也是细菌病原体相关分子模式(PAMPs)的生物活性模拟物。作为PAMPs的组成部分,含1,1'链双糖的生物分子在宿主-病原体相互作用、细胞信号传导和发病机制中发挥着重要作用。获取含有非还原性双糖的复杂生物分子常常受到从天然来源中分离它们的困难的阻碍,这可能导致不纯或降解的产品,特别是当涉及敏感官能团时。因此,采用1,1'-糖基化方法合成具有明确的头异构结构的非还原双糖,对于开发用于疫苗研究以及治疗和诊断应用的含有1,1'-双糖的生物分子至关重要。由于需要同时控制两个异构中心的立体化学反应,非还原性1,1'连接双糖的组装比传统的化学糖基化提出了更大的挑战。含有1,1'-二糖的天然生物分子的结构复杂性,其特征是在其两个吡喃糖环上不对称分布的官能团,强调了强大的立体选择性合成策略的重要性,这些合成策略能够生产适合选择性化学修饰的完全正交保护的1,1'-连接糖。本文综述了1,1'-糖基化的最新进展,并概述了糖基化策略,包括那些旨在形成α,β-, β,β-和α,α-1,1'-糖苷键的策略。特别强调与乳糖糖基受体实现立体选择性的挑战,这些受体通常作为异头化合物的混合物存在,因此在化学糖基化反应中使用是有问题的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approaches to stereoselective 1,1'-glycosylation.

Nonreducing disaccharides are prevalent in non-mammalian glycans and glycolipids, serving as pivotal structural components in mycobacterial glycans, microbial oligosaccharide and nucleoside antibiotics, as well as biologically active mimetics of bacterial pathogen-associated molecular patterns (PAMPs). As integral components of PAMPs, 1,1'-linked disaccharide-containing biomolecules play important roles in host-pathogen interactions, cellular signaling, and pathogenesis. Accessing complex biomolecules containing nonreducing disaccharides is often hindered by difficulties in isolating them from natural sources, which can result in impure or degraded products, particularly when sensitive functional groups are involved. Consequently, approaches to 1,1'-glycosylation for the synthesis of nonreducing disaccharides with defined anomeric configurations are essential for the development of 1,1'-disaccharide-containing biomolecules used in vaccine research, as well as for therapeutic and diagnostic applications. The assembly of nonreducing 1,1'-linked disaccharides presents greater challenges than conventional chemical glycosylation due to the need for simultaneous control of stereochemistry at two anomeric centers. The structural complexity of natural biomolecules entailing 1,1'-disaccharides, which feature asymmetrically distributed functional groups across their two pyranose rings, emphasizes the importance of robust, stereoselective synthetic strategies capable of producing fully orthogonally protected 1,1'-linked sugars suitable for selective chemical modification. This review highlights recent advances in 1,1'-glycosylation and provides an overview of selected glycosylation strategies, including those aimed at forming α,β-, β,β-, and α,α-1,1'-glycosidic linkages. Particular emphasis is placed on the challenges of achieving stereoselectivity with lactol glycosyl acceptors, which commonly exist as mixtures of anomers and are therefore problematic to use in chemical glycosylation reactions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
3.70%
发文量
167
审稿时长
1.4 months
期刊介绍: The Beilstein Journal of Organic Chemistry is an international, peer-reviewed, Open Access journal. It provides a unique platform for rapid publication without any charges (free for author and reader) – Platinum Open Access. The content is freely accessible 365 days a year to any user worldwide. Articles are available online immediately upon publication and are publicly archived in all major repositories. In addition, it provides a platform for publishing thematic issues (theme-based collections of articles) on topical issues in organic chemistry. The journal publishes high quality research and reviews in all areas of organic chemistry, including organic synthesis, organic reactions, natural product chemistry, structural investigations, supramolecular chemistry and chemical biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信