生物炭在对抗微塑料污染中的作用:环境背景下的文献计量学分析。

IF 2.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Beilstein Journal of Nanotechnology Pub Date : 2025-08-21 eCollection Date: 2025-01-01 DOI:10.3762/bjnano.16.102
Tuan Minh Truong Dang, Thao Thu Thi Huynh, Guo-Ping Chang-Chien, Ha Manh Bui
{"title":"生物炭在对抗微塑料污染中的作用:环境背景下的文献计量学分析。","authors":"Tuan Minh Truong Dang, Thao Thu Thi Huynh, Guo-Ping Chang-Chien, Ha Manh Bui","doi":"10.3762/bjnano.16.102","DOIUrl":null,"url":null,"abstract":"<p><p>This study employs a bibliometric analysis using CiteSpace to explore research trends on the impact of biochar on microplastics (MPs) in soil and water environments. In agricultural soils, MPs reduce crop yield, alter soil properties, and disrupt microbial diversity and nutrient cycling. Biochar, a stable and eco-friendly material, has demonstrated effectiveness in mitigating these effects by restoring soil chemistry, enhancing microbial diversity and improving crop productivity. Recent studies report that biochar increases crop yields by 30-81%, even under high MP contamination levels (up to five times that of biochar-modified bacteria). Additionally, biochar enhances Olsen-P availability by 46.6%, increases soil organic carbon in microaggregates by 35.7%, and reduces antibiotic resistance genes by promoting beneficial microbes such as <i>Subgroup 10</i>, <i>Bacillus</i>, and <i>Pseudomonas</i>. In aquatic systems, biochar serves as an efficient adsorbent, particularly for MPs larger than 10 µm, including polystyrene. Studies suggest that fixed-column models achieve superior removal efficiency (95.31% ± 5.26%) compared to batch systems (93.36% ± 4.92%). Specifically, for MPs ≥10 µm, fixed columns reach 99% efficiency, while magnetically modified biochar captures 96.2% of MPs as small as 1 µm. These efficiencies stem from biochar's integration of physical and chemical mechanisms that enhance MP retention, particularly for MPs smaller than 10 µm, positioning it as a promising solution for nanoplastic remediation.</p>","PeriodicalId":8802,"journal":{"name":"Beilstein Journal of Nanotechnology","volume":"16 ","pages":"1401-1416"},"PeriodicalIF":2.7000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12415920/pdf/","citationCount":"0","resultStr":"{\"title\":\"The role of biochar in combating microplastic pollution: a bibliometric analysis in environmental contexts.\",\"authors\":\"Tuan Minh Truong Dang, Thao Thu Thi Huynh, Guo-Ping Chang-Chien, Ha Manh Bui\",\"doi\":\"10.3762/bjnano.16.102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study employs a bibliometric analysis using CiteSpace to explore research trends on the impact of biochar on microplastics (MPs) in soil and water environments. In agricultural soils, MPs reduce crop yield, alter soil properties, and disrupt microbial diversity and nutrient cycling. Biochar, a stable and eco-friendly material, has demonstrated effectiveness in mitigating these effects by restoring soil chemistry, enhancing microbial diversity and improving crop productivity. Recent studies report that biochar increases crop yields by 30-81%, even under high MP contamination levels (up to five times that of biochar-modified bacteria). Additionally, biochar enhances Olsen-P availability by 46.6%, increases soil organic carbon in microaggregates by 35.7%, and reduces antibiotic resistance genes by promoting beneficial microbes such as <i>Subgroup 10</i>, <i>Bacillus</i>, and <i>Pseudomonas</i>. In aquatic systems, biochar serves as an efficient adsorbent, particularly for MPs larger than 10 µm, including polystyrene. Studies suggest that fixed-column models achieve superior removal efficiency (95.31% ± 5.26%) compared to batch systems (93.36% ± 4.92%). Specifically, for MPs ≥10 µm, fixed columns reach 99% efficiency, while magnetically modified biochar captures 96.2% of MPs as small as 1 µm. These efficiencies stem from biochar's integration of physical and chemical mechanisms that enhance MP retention, particularly for MPs smaller than 10 µm, positioning it as a promising solution for nanoplastic remediation.</p>\",\"PeriodicalId\":8802,\"journal\":{\"name\":\"Beilstein Journal of Nanotechnology\",\"volume\":\"16 \",\"pages\":\"1401-1416\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12415920/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Beilstein Journal of Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3762/bjnano.16.102\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beilstein Journal of Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3762/bjnano.16.102","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用文献计量学分析,探讨了生物炭对土壤和水环境中微塑料(MPs)影响的研究趋势。在农业土壤中,MPs降低作物产量,改变土壤性质,破坏微生物多样性和养分循环。生物炭是一种稳定且生态友好的材料,通过恢复土壤化学、增强微生物多样性和提高作物生产力,已经证明了减轻这些影响的有效性。最近的研究报告称,即使在高MP污染水平(高达生物炭修饰细菌的5倍)下,生物炭也能使作物产量提高30-81%。此外,生物炭提高了46.6%的Olsen-P有效性,增加了35.7%的土壤微团聚体有机碳,并通过促进10亚群、芽孢杆菌和假单胞菌等有益微生物减少抗生素抗性基因。在水生系统中,生物炭是一种有效的吸附剂,特别是对于大于10µm的MPs,包括聚苯乙烯。研究表明,固定柱模型的去除率(95.31%±5.26%)优于批处理系统(93.36%±4.92%)。具体来说,对于MPs≥10µm,固定柱的效率达到99%,而磁性修饰的生物炭捕获了96.2%的小至1µm的MPs。这些效率源于生物炭的物理和化学机制的整合,增强了MP的保留,特别是对于小于10微米的MP,使其成为纳米塑料修复的一个有前途的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The role of biochar in combating microplastic pollution: a bibliometric analysis in environmental contexts.

This study employs a bibliometric analysis using CiteSpace to explore research trends on the impact of biochar on microplastics (MPs) in soil and water environments. In agricultural soils, MPs reduce crop yield, alter soil properties, and disrupt microbial diversity and nutrient cycling. Biochar, a stable and eco-friendly material, has demonstrated effectiveness in mitigating these effects by restoring soil chemistry, enhancing microbial diversity and improving crop productivity. Recent studies report that biochar increases crop yields by 30-81%, even under high MP contamination levels (up to five times that of biochar-modified bacteria). Additionally, biochar enhances Olsen-P availability by 46.6%, increases soil organic carbon in microaggregates by 35.7%, and reduces antibiotic resistance genes by promoting beneficial microbes such as Subgroup 10, Bacillus, and Pseudomonas. In aquatic systems, biochar serves as an efficient adsorbent, particularly for MPs larger than 10 µm, including polystyrene. Studies suggest that fixed-column models achieve superior removal efficiency (95.31% ± 5.26%) compared to batch systems (93.36% ± 4.92%). Specifically, for MPs ≥10 µm, fixed columns reach 99% efficiency, while magnetically modified biochar captures 96.2% of MPs as small as 1 µm. These efficiencies stem from biochar's integration of physical and chemical mechanisms that enhance MP retention, particularly for MPs smaller than 10 µm, positioning it as a promising solution for nanoplastic remediation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Beilstein Journal of Nanotechnology
Beilstein Journal of Nanotechnology NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.70
自引率
3.20%
发文量
109
审稿时长
2 months
期刊介绍: The Beilstein Journal of Nanotechnology is an international, peer-reviewed, Open Access journal. It provides a unique platform for rapid publication without any charges (free for author and reader) – Platinum Open Access. The content is freely accessible 365 days a year to any user worldwide. Articles are available online immediately upon publication and are publicly archived in all major repositories. In addition, it provides a platform for publishing thematic issues (theme-based collections of articles) on topical issues in nanoscience and nanotechnology. The journal is published and completely funded by the Beilstein-Institut, a non-profit foundation located in Frankfurt am Main, Germany. The editor-in-chief is Professor Thomas Schimmel – Karlsruhe Institute of Technology. He is supported by more than 20 associate editors who are responsible for a particular subject area within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信