杯芳烃/柱芳烃类药物控释系统的研究进展。

IF 2.1 4区 化学 Q2 CHEMISTRY, ORGANIC
Beilstein Journal of Organic Chemistry Pub Date : 2025-09-03 eCollection Date: 2025-01-01 DOI:10.3762/bjoc.21.139
Liu-Huan Yi, Jian Qin, Si-Ran Lu, Liu-Pan Yang, Li-Li Wang, Huan Yao
{"title":"杯芳烃/柱芳烃类药物控释系统的研究进展。","authors":"Liu-Huan Yi, Jian Qin, Si-Ran Lu, Liu-Pan Yang, Li-Li Wang, Huan Yao","doi":"10.3762/bjoc.21.139","DOIUrl":null,"url":null,"abstract":"<p><p>Intelligent controlled-release drug delivery systems that are responsive to various external stimuli have garnered significant interest from researchers and have broad applications in the biomedical field. Aromatic macrocycles, including calixarenes and pillararenes, are considered ideal candidates for the construction of supramolecular drug delivery systems because of their simple synthesis, ease of modification, electron-rich and hydrophobic cavities, and highly selective molecular recognition. In recent years, numerous supramolecular drug delivery systems utilizing aromatic macrocycles have been developed. This review article provides an overview of the advancements of controlled drug release systems based on host-guest selective recognition, self-assembly, and nano-valves by the use of of calixarenes and pillararenes from five perspectives: pH, light, enzyme, hypoxia, and multi-stimuli combination responses. Furthermore, the article projects the future clinical application prospects of controlled-release technologies, with the aim of offering a reference for the utilization of aromatic macrocycles in drug-controlled release applications.</p>","PeriodicalId":8756,"journal":{"name":"Beilstein Journal of Organic Chemistry","volume":"21 ","pages":"1757-1785"},"PeriodicalIF":2.1000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12415917/pdf/","citationCount":"0","resultStr":"{\"title\":\"Research progress on calixarene/pillararene-based controlled drug release systems.\",\"authors\":\"Liu-Huan Yi, Jian Qin, Si-Ran Lu, Liu-Pan Yang, Li-Li Wang, Huan Yao\",\"doi\":\"10.3762/bjoc.21.139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intelligent controlled-release drug delivery systems that are responsive to various external stimuli have garnered significant interest from researchers and have broad applications in the biomedical field. Aromatic macrocycles, including calixarenes and pillararenes, are considered ideal candidates for the construction of supramolecular drug delivery systems because of their simple synthesis, ease of modification, electron-rich and hydrophobic cavities, and highly selective molecular recognition. In recent years, numerous supramolecular drug delivery systems utilizing aromatic macrocycles have been developed. This review article provides an overview of the advancements of controlled drug release systems based on host-guest selective recognition, self-assembly, and nano-valves by the use of of calixarenes and pillararenes from five perspectives: pH, light, enzyme, hypoxia, and multi-stimuli combination responses. Furthermore, the article projects the future clinical application prospects of controlled-release technologies, with the aim of offering a reference for the utilization of aromatic macrocycles in drug-controlled release applications.</p>\",\"PeriodicalId\":8756,\"journal\":{\"name\":\"Beilstein Journal of Organic Chemistry\",\"volume\":\"21 \",\"pages\":\"1757-1785\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12415917/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Beilstein Journal of Organic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3762/bjoc.21.139\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beilstein Journal of Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3762/bjoc.21.139","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

摘要

智能控释给药系统对各种外界刺激的反应引起了研究人员的极大兴趣,在生物医学领域有着广泛的应用。芳香族大环,包括杯芳烃和柱芳烃,被认为是构建超分子药物传递系统的理想候选者,因为它们合成简单,易于修饰,富含电子和疏水的空腔,以及高度选择性的分子识别。近年来,利用芳香族大环的超分子药物传递系统得到了广泛的研究。本文从pH、光、酶、缺氧和多刺激组合反应五个方面综述了杯芳烃和柱芳烃在主客体选择性识别、自组装和纳米阀控制药物释放系统方面的研究进展。展望了未来控释技术的临床应用前景,以期为芳香族大环化合物在药物控释中的应用提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research progress on calixarene/pillararene-based controlled drug release systems.

Intelligent controlled-release drug delivery systems that are responsive to various external stimuli have garnered significant interest from researchers and have broad applications in the biomedical field. Aromatic macrocycles, including calixarenes and pillararenes, are considered ideal candidates for the construction of supramolecular drug delivery systems because of their simple synthesis, ease of modification, electron-rich and hydrophobic cavities, and highly selective molecular recognition. In recent years, numerous supramolecular drug delivery systems utilizing aromatic macrocycles have been developed. This review article provides an overview of the advancements of controlled drug release systems based on host-guest selective recognition, self-assembly, and nano-valves by the use of of calixarenes and pillararenes from five perspectives: pH, light, enzyme, hypoxia, and multi-stimuli combination responses. Furthermore, the article projects the future clinical application prospects of controlled-release technologies, with the aim of offering a reference for the utilization of aromatic macrocycles in drug-controlled release applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
3.70%
发文量
167
审稿时长
1.4 months
期刊介绍: The Beilstein Journal of Organic Chemistry is an international, peer-reviewed, Open Access journal. It provides a unique platform for rapid publication without any charges (free for author and reader) – Platinum Open Access. The content is freely accessible 365 days a year to any user worldwide. Articles are available online immediately upon publication and are publicly archived in all major repositories. In addition, it provides a platform for publishing thematic issues (theme-based collections of articles) on topical issues in organic chemistry. The journal publishes high quality research and reviews in all areas of organic chemistry, including organic synthesis, organic reactions, natural product chemistry, structural investigations, supramolecular chemistry and chemical biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信