揭示精确药物设计的分子特征:来自锥虫硫酮还原酶、PKC-θ和CB1的机器学习见解。

IF 3.8 2区 化学 Q2 CHEMISTRY, APPLIED
Sunil Sahu, Adarsh Anmol, Tushar Nishad, Satya Eswari Jujjavarapu
{"title":"揭示精确药物设计的分子特征:来自锥虫硫酮还原酶、PKC-θ和CB1的机器学习见解。","authors":"Sunil Sahu, Adarsh Anmol, Tushar Nishad, Satya Eswari Jujjavarapu","doi":"10.1007/s11030-025-11287-3","DOIUrl":null,"url":null,"abstract":"<p><p>Traditional drug discovery methods like high-throughput screening and molecular docking are slow and costly. This study introduces a machine learning framework to predict bioactivity (pIC₅₀) and identify key molecular properties and structural features for targeting Trypanothione reductase (TR), Protein kinase C theta (PKC-θ), and Cannabinoid receptor 1 (CB1) using data from the ChEMBL database. Molecular fingerprints, generated via PaDEL-Descriptor and RDKit, encoded structural features as binary vectors. Three models-Random Forest (RF), Gradient Boosting (GB), and a stacking ensemble with Ridge Regression-predicted pIC₅₀, with the ensemble achieving the lowest RMSE. Results highlight heteroatom-containing rings for TR, multiple ring systems for PKC-θ, and aromatic rings for CB1 as critical for high bioactivity. This adaptable framework accelerates drug design by pinpointing optimizable structures, enhancing efficiency in therapeutic development.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling molecular signatures for precision drug design: machine learning insights from trypanothione reductase, PKC-θ, and CB1.\",\"authors\":\"Sunil Sahu, Adarsh Anmol, Tushar Nishad, Satya Eswari Jujjavarapu\",\"doi\":\"10.1007/s11030-025-11287-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traditional drug discovery methods like high-throughput screening and molecular docking are slow and costly. This study introduces a machine learning framework to predict bioactivity (pIC₅₀) and identify key molecular properties and structural features for targeting Trypanothione reductase (TR), Protein kinase C theta (PKC-θ), and Cannabinoid receptor 1 (CB1) using data from the ChEMBL database. Molecular fingerprints, generated via PaDEL-Descriptor and RDKit, encoded structural features as binary vectors. Three models-Random Forest (RF), Gradient Boosting (GB), and a stacking ensemble with Ridge Regression-predicted pIC₅₀, with the ensemble achieving the lowest RMSE. Results highlight heteroatom-containing rings for TR, multiple ring systems for PKC-θ, and aromatic rings for CB1 as critical for high bioactivity. This adaptable framework accelerates drug design by pinpointing optimizable structures, enhancing efficiency in therapeutic development.</p>\",\"PeriodicalId\":708,\"journal\":{\"name\":\"Molecular Diversity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Diversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11030-025-11287-3\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11287-3","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

传统的药物发现方法,如高通量筛选和分子对接,速度慢,成本高。本研究引入了一个机器学习框架来预测生物活性(pIC₅0),并利用ChEMBL数据库的数据确定针对锥体硫酮还原酶(TR),蛋白激酶C θ (PKC-θ)和大麻素受体1 (CB1)的关键分子特性和结构特征。通过pdel - descriptor和RDKit生成分子指纹,将结构特征编码为二值向量。三个模型-随机森林(RF),梯度增强(GB)和具有Ridge回归的堆叠集成-预测了pIC₅0,集成实现了最低的RMSE。结果表明,TR的含杂原子环、PKC-θ的多环系统和CB1的芳香环是高生物活性的关键。这种适应性强的框架通过精确定位优化结构来加速药物设计,提高治疗开发的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unveiling molecular signatures for precision drug design: machine learning insights from trypanothione reductase, PKC-θ, and CB1.

Traditional drug discovery methods like high-throughput screening and molecular docking are slow and costly. This study introduces a machine learning framework to predict bioactivity (pIC₅₀) and identify key molecular properties and structural features for targeting Trypanothione reductase (TR), Protein kinase C theta (PKC-θ), and Cannabinoid receptor 1 (CB1) using data from the ChEMBL database. Molecular fingerprints, generated via PaDEL-Descriptor and RDKit, encoded structural features as binary vectors. Three models-Random Forest (RF), Gradient Boosting (GB), and a stacking ensemble with Ridge Regression-predicted pIC₅₀, with the ensemble achieving the lowest RMSE. Results highlight heteroatom-containing rings for TR, multiple ring systems for PKC-θ, and aromatic rings for CB1 as critical for high bioactivity. This adaptable framework accelerates drug design by pinpointing optimizable structures, enhancing efficiency in therapeutic development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Diversity
Molecular Diversity 化学-化学综合
CiteScore
7.30
自引率
7.90%
发文量
219
审稿时长
2.7 months
期刊介绍: Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including: combinatorial chemistry and parallel synthesis; small molecule libraries; microwave synthesis; flow synthesis; fluorous synthesis; diversity oriented synthesis (DOS); nanoreactors; click chemistry; multiplex technologies; fragment- and ligand-based design; structure/function/SAR; computational chemistry and molecular design; chemoinformatics; screening techniques and screening interfaces; analytical and purification methods; robotics, automation and miniaturization; targeted libraries; display libraries; peptides and peptoids; proteins; oligonucleotides; carbohydrates; natural diversity; new methods of library formulation and deconvolution; directed evolution, origin of life and recombination; search techniques, landscapes, random chemistry and more;
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信