细菌芳香族聚酮生物合成中的氧化重排。

IF 10.6 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Fangwen Jiao, Shuai Li, Hongzhi Qiao, Ruihua Jiao
{"title":"细菌芳香族聚酮生物合成中的氧化重排。","authors":"Fangwen Jiao, Shuai Li, Hongzhi Qiao, Ruihua Jiao","doi":"10.1039/d5np00049a","DOIUrl":null,"url":null,"abstract":"<p><p>Covering: up to April 2025Bacterial aromatic polyketides represent a notable class of natural products that have found extensive applications in clinical treatments. In their biosynthesis, oxidative rearrangements represent critical transformations that typically afford diverse scaffolds, structural rigidity, and biological activities. In this context, it is evident that redox enzymes are frequently implicated in various rearrangement processes, whereby they facilitate the transformation of pathway precursors into mature natural products. In this review, we will elucidate how natural enzymes utilize redox chemistry to create new carbon skeletons in the field of bacterial aromatic polyketide biosynthesis. Representative unique examples of Baeyer-Villiger and Favorskii-type oxidative rearrangements catalyzed by flavin-dependent monooxygenases, innovative carbon skeleton rearrangements catalyzed by ketoreductases and dioxygenases, as well as intermolecular dimerization catalyzed by CYP450s or NmrA-like proteins, are summarized and discussed. Concurrently, the structural characteristics and catalytic mechanisms of selected enzymes will also be introduced. By revealing the intriguing chemistry and enzymology behind these oxidative rearrangement transformations, this comprehensive review will not only enhance our comprehension of this uncommon chemical regularity but also provide potent biocatalysts for the semi-synthesis or synthetic biology of complex natural molecules.</p>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":" ","pages":""},"PeriodicalIF":10.6000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The oxidative rearrangements in bacterial aromatic polyketide biosynthesis.\",\"authors\":\"Fangwen Jiao, Shuai Li, Hongzhi Qiao, Ruihua Jiao\",\"doi\":\"10.1039/d5np00049a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Covering: up to April 2025Bacterial aromatic polyketides represent a notable class of natural products that have found extensive applications in clinical treatments. In their biosynthesis, oxidative rearrangements represent critical transformations that typically afford diverse scaffolds, structural rigidity, and biological activities. In this context, it is evident that redox enzymes are frequently implicated in various rearrangement processes, whereby they facilitate the transformation of pathway precursors into mature natural products. In this review, we will elucidate how natural enzymes utilize redox chemistry to create new carbon skeletons in the field of bacterial aromatic polyketide biosynthesis. Representative unique examples of Baeyer-Villiger and Favorskii-type oxidative rearrangements catalyzed by flavin-dependent monooxygenases, innovative carbon skeleton rearrangements catalyzed by ketoreductases and dioxygenases, as well as intermolecular dimerization catalyzed by CYP450s or NmrA-like proteins, are summarized and discussed. Concurrently, the structural characteristics and catalytic mechanisms of selected enzymes will also be introduced. By revealing the intriguing chemistry and enzymology behind these oxidative rearrangement transformations, this comprehensive review will not only enhance our comprehension of this uncommon chemical regularity but also provide potent biocatalysts for the semi-synthesis or synthetic biology of complex natural molecules.</p>\",\"PeriodicalId\":94,\"journal\":{\"name\":\"Natural Product Reports\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Product Reports\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5np00049a\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Product Reports","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5np00049a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

截止到2025年4月,细菌芳香聚酮类化合物是一类显著的天然产物,在临床治疗中得到了广泛的应用。在它们的生物合成中,氧化重排代表了关键的转化,通常提供不同的支架,结构刚性和生物活性。在这种情况下,很明显,氧化还原酶经常参与各种重排过程,从而促进途径前体转化为成熟的天然产物。本文就细菌芳香族聚酮生物合成领域中天然酶如何利用氧化还原化学生成新的碳骨架作一综述。本文总结并讨论了黄素依赖性单加氧酶催化的Baeyer-Villiger和favorskii型氧化重排、酮还原酶和双加氧酶催化的创新性碳骨架重排以及cyp450或nmra样蛋白催化的分子间二聚化等具有代表性的独特例子。同时,还将介绍所选酶的结构特点和催化机理。通过揭示这些氧化重排转化背后有趣的化学和酶学,这一全面的综述不仅将增强我们对这种不寻常的化学规律的理解,而且还将为复杂天然分子的半合成或合成生物学提供强有力的生物催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The oxidative rearrangements in bacterial aromatic polyketide biosynthesis.

Covering: up to April 2025Bacterial aromatic polyketides represent a notable class of natural products that have found extensive applications in clinical treatments. In their biosynthesis, oxidative rearrangements represent critical transformations that typically afford diverse scaffolds, structural rigidity, and biological activities. In this context, it is evident that redox enzymes are frequently implicated in various rearrangement processes, whereby they facilitate the transformation of pathway precursors into mature natural products. In this review, we will elucidate how natural enzymes utilize redox chemistry to create new carbon skeletons in the field of bacterial aromatic polyketide biosynthesis. Representative unique examples of Baeyer-Villiger and Favorskii-type oxidative rearrangements catalyzed by flavin-dependent monooxygenases, innovative carbon skeleton rearrangements catalyzed by ketoreductases and dioxygenases, as well as intermolecular dimerization catalyzed by CYP450s or NmrA-like proteins, are summarized and discussed. Concurrently, the structural characteristics and catalytic mechanisms of selected enzymes will also be introduced. By revealing the intriguing chemistry and enzymology behind these oxidative rearrangement transformations, this comprehensive review will not only enhance our comprehension of this uncommon chemical regularity but also provide potent biocatalysts for the semi-synthesis or synthetic biology of complex natural molecules.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Natural Product Reports
Natural Product Reports 化学-生化与分子生物学
CiteScore
21.20
自引率
3.40%
发文量
127
审稿时长
1.7 months
期刊介绍: Natural Product Reports (NPR) serves as a pivotal critical review journal propelling advancements in all facets of natural products research, encompassing isolation, structural and stereochemical determination, biosynthesis, biological activity, and synthesis. With a broad scope, NPR extends its influence into the wider bioinorganic, bioorganic, and chemical biology communities. Covering areas such as enzymology, nucleic acids, genetics, chemical ecology, carbohydrates, primary and secondary metabolism, and analytical techniques, the journal provides insightful articles focusing on key developments shaping the field, rather than offering exhaustive overviews of all results. NPR encourages authors to infuse their perspectives on developments, trends, and future directions, fostering a dynamic exchange of ideas within the natural products research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信