血浆蛋白质组学高性能生物标志物在结直肠癌早期诊断中的应用。

IF 3.6 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Haoran Jin, , , Kai Deng, , , Shaochong Qi, , , Zhaomin Deng, , , Lu Pu, , , Dongqin Xu, , , Weina Jing, , , Jin Wang, , , Zhiliang Zuo, , , Jinlin Yang*, , and , Hao Jiang*, 
{"title":"血浆蛋白质组学高性能生物标志物在结直肠癌早期诊断中的应用。","authors":"Haoran Jin,&nbsp;, ,&nbsp;Kai Deng,&nbsp;, ,&nbsp;Shaochong Qi,&nbsp;, ,&nbsp;Zhaomin Deng,&nbsp;, ,&nbsp;Lu Pu,&nbsp;, ,&nbsp;Dongqin Xu,&nbsp;, ,&nbsp;Weina Jing,&nbsp;, ,&nbsp;Jin Wang,&nbsp;, ,&nbsp;Zhiliang Zuo,&nbsp;, ,&nbsp;Jinlin Yang*,&nbsp;, and ,&nbsp;Hao Jiang*,&nbsp;","doi":"10.1021/acs.jproteome.5c00483","DOIUrl":null,"url":null,"abstract":"<p >Colorectal cancer (CRC) is a major global health challenge due to its high incidence, mortality, and low rate of early detection. Early diagnosis, targeting precancerous lesions (advanced adenomas) and early stage CRC (Tis and T1), is critical for improving patient survival. Given the limitations of current detection methods for advanced adenomas, developing high-performance early diagnostic strategies is essential for effective prevention. In this study, we employed the proximity extension assay using the Olink Explore 384 Cardiometabolic panel to identify 15 protein biomarkers, of which 8 proteins (MMP7, GDF15, REG1B, RNASE3, REG1A, TFF3, MFAP5, and TGM2) were incorporated into multiple machine learning models to diagnose colorectal advanced neoplasia (AN) in the discovery cohort (<i>n</i> = 80), achieving AUC values above 0.90. These models also demonstrated significant diagnostic performance, with AUCs greater than 0.88, for patients with AN or advanced adenomas in the validation cohort (<i>n</i> = 69). Furthermore, hub biomarkers (MMP7 and GDF15) were identified and subsequently validated along with an analysis of their clinical significance. Thus, our study identifies multiprotein signatures validated in two cohorts with high diagnostic performance for colorectal AN, contributing to the development of the clinical detection kit for noninvasive early diagnosis of CRC.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":"24 10","pages":"5177–5189"},"PeriodicalIF":3.6000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasma Proteomic High-Performance Biomarkers for Early Diagnosis of Colorectal Cancer\",\"authors\":\"Haoran Jin,&nbsp;, ,&nbsp;Kai Deng,&nbsp;, ,&nbsp;Shaochong Qi,&nbsp;, ,&nbsp;Zhaomin Deng,&nbsp;, ,&nbsp;Lu Pu,&nbsp;, ,&nbsp;Dongqin Xu,&nbsp;, ,&nbsp;Weina Jing,&nbsp;, ,&nbsp;Jin Wang,&nbsp;, ,&nbsp;Zhiliang Zuo,&nbsp;, ,&nbsp;Jinlin Yang*,&nbsp;, and ,&nbsp;Hao Jiang*,&nbsp;\",\"doi\":\"10.1021/acs.jproteome.5c00483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Colorectal cancer (CRC) is a major global health challenge due to its high incidence, mortality, and low rate of early detection. Early diagnosis, targeting precancerous lesions (advanced adenomas) and early stage CRC (Tis and T1), is critical for improving patient survival. Given the limitations of current detection methods for advanced adenomas, developing high-performance early diagnostic strategies is essential for effective prevention. In this study, we employed the proximity extension assay using the Olink Explore 384 Cardiometabolic panel to identify 15 protein biomarkers, of which 8 proteins (MMP7, GDF15, REG1B, RNASE3, REG1A, TFF3, MFAP5, and TGM2) were incorporated into multiple machine learning models to diagnose colorectal advanced neoplasia (AN) in the discovery cohort (<i>n</i> = 80), achieving AUC values above 0.90. These models also demonstrated significant diagnostic performance, with AUCs greater than 0.88, for patients with AN or advanced adenomas in the validation cohort (<i>n</i> = 69). Furthermore, hub biomarkers (MMP7 and GDF15) were identified and subsequently validated along with an analysis of their clinical significance. Thus, our study identifies multiprotein signatures validated in two cohorts with high diagnostic performance for colorectal AN, contributing to the development of the clinical detection kit for noninvasive early diagnosis of CRC.</p>\",\"PeriodicalId\":48,\"journal\":{\"name\":\"Journal of Proteome Research\",\"volume\":\"24 10\",\"pages\":\"5177–5189\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Proteome Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jproteome.5c00483\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jproteome.5c00483","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

结直肠癌(CRC)由于其高发病率、高死亡率和低早期发现率,是一个重大的全球健康挑战。早期诊断,针对癌前病变(晚期腺瘤)和早期CRC (Tis和T1),是提高患者生存率的关键。鉴于目前晚期腺瘤检测方法的局限性,开发高性能的早期诊断策略对于有效预防至关重要。在本研究中,我们使用Olink Explore 384 cardimetabolic panel采用接近扩展法(proximity extension assay)鉴定了15种蛋白质生物标志物,其中8种蛋白质(MMP7、GDF15、REG1B、RNASE3、REG1A、TFF3、MFAP5和TGM2)被纳入多个机器学习模型,用于诊断发现队列(n = 80)中的结直肠癌晚期肿瘤(AN), AUC值超过0.90。在验证队列(n = 69)中,这些模型对AN或晚期腺瘤患者也显示出显著的诊断性能,auc大于0.88。此外,中心生物标志物(MMP7和GDF15)被确定并随后验证,并分析其临床意义。因此,我们的研究确定了在两个队列中验证的多蛋白特征,对结直肠癌的无创早期诊断具有较高的诊断性能,有助于开发临床检测试剂盒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Plasma Proteomic High-Performance Biomarkers for Early Diagnosis of Colorectal Cancer

Plasma Proteomic High-Performance Biomarkers for Early Diagnosis of Colorectal Cancer

Colorectal cancer (CRC) is a major global health challenge due to its high incidence, mortality, and low rate of early detection. Early diagnosis, targeting precancerous lesions (advanced adenomas) and early stage CRC (Tis and T1), is critical for improving patient survival. Given the limitations of current detection methods for advanced adenomas, developing high-performance early diagnostic strategies is essential for effective prevention. In this study, we employed the proximity extension assay using the Olink Explore 384 Cardiometabolic panel to identify 15 protein biomarkers, of which 8 proteins (MMP7, GDF15, REG1B, RNASE3, REG1A, TFF3, MFAP5, and TGM2) were incorporated into multiple machine learning models to diagnose colorectal advanced neoplasia (AN) in the discovery cohort (n = 80), achieving AUC values above 0.90. These models also demonstrated significant diagnostic performance, with AUCs greater than 0.88, for patients with AN or advanced adenomas in the validation cohort (n = 69). Furthermore, hub biomarkers (MMP7 and GDF15) were identified and subsequently validated along with an analysis of their clinical significance. Thus, our study identifies multiprotein signatures validated in two cohorts with high diagnostic performance for colorectal AN, contributing to the development of the clinical detection kit for noninvasive early diagnosis of CRC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Proteome Research
Journal of Proteome Research 生物-生化研究方法
CiteScore
9.00
自引率
4.50%
发文量
251
审稿时长
3 months
期刊介绍: Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信