稀疏波函数的量子信息理论及其在量子化学中的应用。

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
Davide Materia, Leonardo Ratini and Leonardo Guidoni*, 
{"title":"稀疏波函数的量子信息理论及其在量子化学中的应用。","authors":"Davide Materia,&nbsp;Leonardo Ratini and Leonardo Guidoni*,&nbsp;","doi":"10.1021/acs.jpca.5c02137","DOIUrl":null,"url":null,"abstract":"<p >In recent years Quantum Computing prominently entered in the field of Computational Chemistry, importing and transforming computational methods and ideas originally developed within other disciplines, such as Physics, Mathematics and Computer Science into algorithms able to estimate quantum properties of atoms and molecules on present and future quantum devices. An important role in this contamination process is attributed to Quantum Information techniques, having the 2-fold role of contributing to the analysis of electron correlation and entanglements and guiding the construction of wave function variational ansatzes for the Variational Quantum Eigensolver technique. This paper introduces the tool SparQ (Sparse Quantum state analysis), designed to efficiently compute fundamental quantum information theory observables on post-Hartree–Fock wave functions sparse in their definition space. The core methodology involves mapping Fermionic wave functions to qubit space using Fermionic-to-qubits transformations and leveraging the sparse nature of these wave functions to evaluate observables and properties of the wave function. The effectiveness of SparQ is validated by analyzing the mutual information matrices of wave functions for the water molecule and the entropy of ∼10<sup>2</sup> qubits describing the benzene molecule. This highlights its capability to handle large-scale quantum systems, limited mainly by the capabilities of quantum chemical methods used to retrieve the wave functions. The results indicate that quantum information theoretical analysis, so far limited to traditional tensor network methods and study of transition operators, can be applied to all post-Hartree–Fock wave functions, extending their applications to larger and more complex chemical systems.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":"129 37","pages":"8675–8688"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.jpca.5c02137","citationCount":"0","resultStr":"{\"title\":\"Quantum Information Theory on Sparse Wave Functions and Applications for Quantum Chemistry\",\"authors\":\"Davide Materia,&nbsp;Leonardo Ratini and Leonardo Guidoni*,&nbsp;\",\"doi\":\"10.1021/acs.jpca.5c02137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In recent years Quantum Computing prominently entered in the field of Computational Chemistry, importing and transforming computational methods and ideas originally developed within other disciplines, such as Physics, Mathematics and Computer Science into algorithms able to estimate quantum properties of atoms and molecules on present and future quantum devices. An important role in this contamination process is attributed to Quantum Information techniques, having the 2-fold role of contributing to the analysis of electron correlation and entanglements and guiding the construction of wave function variational ansatzes for the Variational Quantum Eigensolver technique. This paper introduces the tool SparQ (Sparse Quantum state analysis), designed to efficiently compute fundamental quantum information theory observables on post-Hartree–Fock wave functions sparse in their definition space. The core methodology involves mapping Fermionic wave functions to qubit space using Fermionic-to-qubits transformations and leveraging the sparse nature of these wave functions to evaluate observables and properties of the wave function. The effectiveness of SparQ is validated by analyzing the mutual information matrices of wave functions for the water molecule and the entropy of ∼10<sup>2</sup> qubits describing the benzene molecule. This highlights its capability to handle large-scale quantum systems, limited mainly by the capabilities of quantum chemical methods used to retrieve the wave functions. The results indicate that quantum information theoretical analysis, so far limited to traditional tensor network methods and study of transition operators, can be applied to all post-Hartree–Fock wave functions, extending their applications to larger and more complex chemical systems.</p>\",\"PeriodicalId\":59,\"journal\":{\"name\":\"The Journal of Physical Chemistry A\",\"volume\":\"129 37\",\"pages\":\"8675–8688\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acs.jpca.5c02137\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpca.5c02137\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpca.5c02137","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

近年来,量子计算突出地进入了计算化学领域,将原本在其他学科(如物理学、数学和计算机科学)中发展起来的计算方法和思想引入并转化为能够估计当前和未来量子设备上原子和分子量子特性的算法。量子信息技术在这一污染过程中发挥了重要作用,它具有双重作用,有助于分析电子相关和纠缠,并指导变分量子本征求解器技术的波函数变分分析的构建。本文介绍了稀疏量子态分析工具SparQ (Sparse Quantum state analysis),该工具旨在有效地计算定义空间中稀疏的后hartree - fock波函数上的基本量子信息论观测值。核心方法包括使用费米子到量子比特的转换将费米子波函数映射到量子比特空间,并利用这些波函数的稀疏性质来评估波函数的可观测值和性质。通过分析水分子的波函数互信息矩阵和描述苯分子的~ 102个量子比特的熵,验证了SparQ的有效性。这突出了它处理大规模量子系统的能力,主要受限于用于检索波函数的量子化学方法的能力。结果表明,量子信息理论分析,目前仅限于传统的张量网络方法和转移算子的研究,可以应用于所有的后hartree - fock波函数,将其应用扩展到更大更复杂的化学系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum Information Theory on Sparse Wave Functions and Applications for Quantum Chemistry

In recent years Quantum Computing prominently entered in the field of Computational Chemistry, importing and transforming computational methods and ideas originally developed within other disciplines, such as Physics, Mathematics and Computer Science into algorithms able to estimate quantum properties of atoms and molecules on present and future quantum devices. An important role in this contamination process is attributed to Quantum Information techniques, having the 2-fold role of contributing to the analysis of electron correlation and entanglements and guiding the construction of wave function variational ansatzes for the Variational Quantum Eigensolver technique. This paper introduces the tool SparQ (Sparse Quantum state analysis), designed to efficiently compute fundamental quantum information theory observables on post-Hartree–Fock wave functions sparse in their definition space. The core methodology involves mapping Fermionic wave functions to qubit space using Fermionic-to-qubits transformations and leveraging the sparse nature of these wave functions to evaluate observables and properties of the wave function. The effectiveness of SparQ is validated by analyzing the mutual information matrices of wave functions for the water molecule and the entropy of ∼102 qubits describing the benzene molecule. This highlights its capability to handle large-scale quantum systems, limited mainly by the capabilities of quantum chemical methods used to retrieve the wave functions. The results indicate that quantum information theoretical analysis, so far limited to traditional tensor network methods and study of transition operators, can be applied to all post-Hartree–Fock wave functions, extending their applications to larger and more complex chemical systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信