{"title":"用于微流体辅助均匀空间条形码微阵列分析的条形码特定固定界面。","authors":"Sidi Tian, Yingxue Li, Jia Yao, Changxiang Huan, Wei Zhang, Shuli Li, Zhiqi Zhang, Zhen Guo, Qi Yang, Chao Li, Chuanyu Li, Jinze Li, Lianqun Zhou","doi":"10.1039/d5an00534e","DOIUrl":null,"url":null,"abstract":"<p><p>Microfluidics-assisted spatially barcoded microarray technology offers a high-throughput, low-cost approach towards spatial transcriptomic profiling. A uniform barcoded microarray is crucial for spatially unbiased mRNA analysis. However, non-specific adsorption of barcoding reagents in microchannels occurs during liquid transport, causing non-uniform barcoding in the chip's functional regions. The uneven microarray further leads to biased transcriptome capture. Herein, we develop a barcode-specific immobilization (BarSI) interface with both anti-adsorption properties and biological activity for the development of uniform spatially barcoded microarray chips. We immobilize DNA probes in straight and serpentine microchannels with coefficients of variation (CV) of 2.3% and 3.2%. Based on the orthogonal barcoding system, we developed spatially barcoded microarray chips with an overall fluorescence intensity CV of 8.47 ± 1.26%, compared with the CV of 20.91 ± 2.84% of microarrays developed on conventional amino glass slides. Using the uniform spatially barcoded microarray chip, we achieved spatially unbiased detection of mouse liver mRNA with an absolute value of Moran's <i>I</i> below 0.05. We present an economical and accessible method for manufacturing uniform spatially barcoded microarray chips, introducing a novel strategy for unbiased transcriptome analysis.</p>","PeriodicalId":63,"journal":{"name":"Analyst","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A barcode-specific immobilization interface for microfluidics-assisted uniform spatially barcoded microarray analysis.\",\"authors\":\"Sidi Tian, Yingxue Li, Jia Yao, Changxiang Huan, Wei Zhang, Shuli Li, Zhiqi Zhang, Zhen Guo, Qi Yang, Chao Li, Chuanyu Li, Jinze Li, Lianqun Zhou\",\"doi\":\"10.1039/d5an00534e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microfluidics-assisted spatially barcoded microarray technology offers a high-throughput, low-cost approach towards spatial transcriptomic profiling. A uniform barcoded microarray is crucial for spatially unbiased mRNA analysis. However, non-specific adsorption of barcoding reagents in microchannels occurs during liquid transport, causing non-uniform barcoding in the chip's functional regions. The uneven microarray further leads to biased transcriptome capture. Herein, we develop a barcode-specific immobilization (BarSI) interface with both anti-adsorption properties and biological activity for the development of uniform spatially barcoded microarray chips. We immobilize DNA probes in straight and serpentine microchannels with coefficients of variation (CV) of 2.3% and 3.2%. Based on the orthogonal barcoding system, we developed spatially barcoded microarray chips with an overall fluorescence intensity CV of 8.47 ± 1.26%, compared with the CV of 20.91 ± 2.84% of microarrays developed on conventional amino glass slides. Using the uniform spatially barcoded microarray chip, we achieved spatially unbiased detection of mouse liver mRNA with an absolute value of Moran's <i>I</i> below 0.05. We present an economical and accessible method for manufacturing uniform spatially barcoded microarray chips, introducing a novel strategy for unbiased transcriptome analysis.</p>\",\"PeriodicalId\":63,\"journal\":{\"name\":\"Analyst\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analyst\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5an00534e\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analyst","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5an00534e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
A barcode-specific immobilization interface for microfluidics-assisted uniform spatially barcoded microarray analysis.
Microfluidics-assisted spatially barcoded microarray technology offers a high-throughput, low-cost approach towards spatial transcriptomic profiling. A uniform barcoded microarray is crucial for spatially unbiased mRNA analysis. However, non-specific adsorption of barcoding reagents in microchannels occurs during liquid transport, causing non-uniform barcoding in the chip's functional regions. The uneven microarray further leads to biased transcriptome capture. Herein, we develop a barcode-specific immobilization (BarSI) interface with both anti-adsorption properties and biological activity for the development of uniform spatially barcoded microarray chips. We immobilize DNA probes in straight and serpentine microchannels with coefficients of variation (CV) of 2.3% and 3.2%. Based on the orthogonal barcoding system, we developed spatially barcoded microarray chips with an overall fluorescence intensity CV of 8.47 ± 1.26%, compared with the CV of 20.91 ± 2.84% of microarrays developed on conventional amino glass slides. Using the uniform spatially barcoded microarray chip, we achieved spatially unbiased detection of mouse liver mRNA with an absolute value of Moran's I below 0.05. We present an economical and accessible method for manufacturing uniform spatially barcoded microarray chips, introducing a novel strategy for unbiased transcriptome analysis.