Flavio della Sala, Benedicte Doerner and Simon J. Webb
{"title":"锌(II)-双(三唑)识别位点的模块化合成及其构象控制。","authors":"Flavio della Sala, Benedicte Doerner and Simon J. Webb","doi":"10.1039/D5OB01226K","DOIUrl":null,"url":null,"abstract":"<p >Zinc(<small>II</small>) bis(triazolyl)(pyridyl)amine (Zn(BTPA)) complexes on the end of α-amino-iso-butyric acid (Aib) foldamers are able to transfer chirality from bound anions to the helical foldamer body. Zn(BTPA) could be obtained by simple synthetic methodology that allowed a range of functional groups to be installed around the binding site, exemplified with a fluorophore, a macrocyclic bridge and Aib itself. Changing functional group did not prevent chiral ligands from controlling foldamer conformation, although differences in complexation kinetics and equilibria were observed. Addition of acetate gave a 2 : 1 foldamer : acetate intermediate at sub-stoichiometric acetate; a similar intermediate was implied during titration with Boc-Pro. A bulkier phosphate ligand or a more sterically hindered site did not form similar intermediates. The modular construction of Zn(BTPA)-capped foldamers will allow these conformational relays to be installed in a wide range of biomimetic constructs.</p>","PeriodicalId":96,"journal":{"name":"Organic & Biomolecular Chemistry","volume":" 38","pages":" 8719-8727"},"PeriodicalIF":2.7000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12421298/pdf/","citationCount":"0","resultStr":"{\"title\":\"Modular synthesis of zinc(ii)-bis(triazole) recognition sites for the conformational control of foldamers\",\"authors\":\"Flavio della Sala, Benedicte Doerner and Simon J. Webb\",\"doi\":\"10.1039/D5OB01226K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Zinc(<small>II</small>) bis(triazolyl)(pyridyl)amine (Zn(BTPA)) complexes on the end of α-amino-iso-butyric acid (Aib) foldamers are able to transfer chirality from bound anions to the helical foldamer body. Zn(BTPA) could be obtained by simple synthetic methodology that allowed a range of functional groups to be installed around the binding site, exemplified with a fluorophore, a macrocyclic bridge and Aib itself. Changing functional group did not prevent chiral ligands from controlling foldamer conformation, although differences in complexation kinetics and equilibria were observed. Addition of acetate gave a 2 : 1 foldamer : acetate intermediate at sub-stoichiometric acetate; a similar intermediate was implied during titration with Boc-Pro. A bulkier phosphate ligand or a more sterically hindered site did not form similar intermediates. The modular construction of Zn(BTPA)-capped foldamers will allow these conformational relays to be installed in a wide range of biomimetic constructs.</p>\",\"PeriodicalId\":96,\"journal\":{\"name\":\"Organic & Biomolecular Chemistry\",\"volume\":\" 38\",\"pages\":\" 8719-8727\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12421298/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic & Biomolecular Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ob/d5ob01226k\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic & Biomolecular Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ob/d5ob01226k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Modular synthesis of zinc(ii)-bis(triazole) recognition sites for the conformational control of foldamers
Zinc(II) bis(triazolyl)(pyridyl)amine (Zn(BTPA)) complexes on the end of α-amino-iso-butyric acid (Aib) foldamers are able to transfer chirality from bound anions to the helical foldamer body. Zn(BTPA) could be obtained by simple synthetic methodology that allowed a range of functional groups to be installed around the binding site, exemplified with a fluorophore, a macrocyclic bridge and Aib itself. Changing functional group did not prevent chiral ligands from controlling foldamer conformation, although differences in complexation kinetics and equilibria were observed. Addition of acetate gave a 2 : 1 foldamer : acetate intermediate at sub-stoichiometric acetate; a similar intermediate was implied during titration with Boc-Pro. A bulkier phosphate ligand or a more sterically hindered site did not form similar intermediates. The modular construction of Zn(BTPA)-capped foldamers will allow these conformational relays to be installed in a wide range of biomimetic constructs.
期刊介绍:
Organic & Biomolecular Chemistry is an international journal using integrated research in chemistry-organic chemistry. Founded in 2003 by the Royal Society of Chemistry, the journal is published in Semimonthly issues and has been indexed by SCIE, a leading international database. The journal focuses on the key research and cutting-edge progress in the field of chemistry-organic chemistry, publishes and reports the research results in this field in a timely manner, and is committed to becoming a window and platform for rapid academic exchanges among peers in this field. The journal's impact factor in 2023 is 2.9, and its CiteScore is 5.5.