具有高三重态能量和深HOMO能量的星形交联空穴输运材料可实现高效的溶液加工深蓝TADF oled

IF 7.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jiaxu Bai  (, ), Jingyuan Feng  (, ), Chuanxin Liao  (, ), Tianhao Wang  (, ), Shirong Wang  (, ), Hongli Liu  (, ), Xianggao Li  (, )
{"title":"具有高三重态能量和深HOMO能量的星形交联空穴输运材料可实现高效的溶液加工深蓝TADF oled","authors":"Jiaxu Bai \n (,&nbsp;),&nbsp;Jingyuan Feng \n (,&nbsp;),&nbsp;Chuanxin Liao \n (,&nbsp;),&nbsp;Tianhao Wang \n (,&nbsp;),&nbsp;Shirong Wang \n (,&nbsp;),&nbsp;Hongli Liu \n (,&nbsp;),&nbsp;Xianggao Li \n (,&nbsp;)","doi":"10.1007/s40843-025-3638-2","DOIUrl":null,"url":null,"abstract":"<div><p>Cross-linkable hole transport materials (x-HTMs) play a crucial role in solving the issue of interlayer mixing of solution-processed organic light-emitting diodes (OLEDs). However, issues such as energy level mismatch and low hole mobility hinder the application of x-HTMs in deep-blue OLEDs. In particular, thermally activated delayed fluorescent (TADF) emitters require HTMs with high triplet energies (<i>E</i><sub>T</sub>) to ensure high exciton utilization efficiency. Here, two star-shaped cross-linkable HTMs 5-(9<i>H</i>-carbazol-9-yl)-<i>N</i><sup>1</sup>,<i>N</i><sup>3</sup>-di(<i>p</i>-tolyl)-<i>N</i><sup>1</sup>,<i>N</i><sup>3</sup>-bis(4-vinylphenyl)benzene-1,3-diamine (m-V-CzDPA) and <i>N</i><sup>1</sup>,<i>N</i><sup>1</sup>-diphenyl-<i>N</i><sup>3</sup>,<i>N</i><sup>5</sup>-di(<i>p</i>-tolyl)-<i>N</i><sup>3</sup>,<i>N</i><sup>5</sup>-bis(4-vinylphenyl) benzene-1,3,5-triamine (m-V-DPADPA) were designed and synthesized. Owing to their aromatic torsion structures, m-V-CzDPA and m-V-DPADPA possessed high <i>E</i><sub>T</sub>s of 2.89 and 2.87 eV, respectively, which can effectively confine triplet excitons in the emitting layer (EML). The carrier diffusion coefficients of their x-HTMs, x-m-CzDPA and x-m-DPADPA, which were obtained via carrier diffusion imaging characterization were 0.54 and 0.44 cm<sup>2</sup> s<sup>−1</sup>, respectively, thus indicating outstanding intrinsic hole transport capacity, with hole mobilities of 4.30×10<sup>−4</sup> and 1.39×10<sup>−4</sup> cm<sup>2</sup> V<sup>−1</sup> s<sup>−1</sup>, respectively. Solution-processed deep-blue TADF-OLEDs employing x-m-CzDPA as the HTM achieved a maximum current efficiency/maximum external quantum efficiency of 5.25 cd A<sup>−1</sup>/18.06%, with CIE coordinates of (0.162, 0.042). This is the first time that x-HTMs have served as efficient deep-blue TADF-OLEDs via a solution process, which also meets the latest BT. 2020 standard (CIE<sub><i>y</i></sub> ⩽ 0.046).</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 9","pages":"3239 - 3249"},"PeriodicalIF":7.4000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Star-shaped cross-linkable hole transport materials with high triplet energy and deep HOMO energy enable efficient solution-processed deep-blue TADF OLEDs\",\"authors\":\"Jiaxu Bai \\n (,&nbsp;),&nbsp;Jingyuan Feng \\n (,&nbsp;),&nbsp;Chuanxin Liao \\n (,&nbsp;),&nbsp;Tianhao Wang \\n (,&nbsp;),&nbsp;Shirong Wang \\n (,&nbsp;),&nbsp;Hongli Liu \\n (,&nbsp;),&nbsp;Xianggao Li \\n (,&nbsp;)\",\"doi\":\"10.1007/s40843-025-3638-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cross-linkable hole transport materials (x-HTMs) play a crucial role in solving the issue of interlayer mixing of solution-processed organic light-emitting diodes (OLEDs). However, issues such as energy level mismatch and low hole mobility hinder the application of x-HTMs in deep-blue OLEDs. In particular, thermally activated delayed fluorescent (TADF) emitters require HTMs with high triplet energies (<i>E</i><sub>T</sub>) to ensure high exciton utilization efficiency. Here, two star-shaped cross-linkable HTMs 5-(9<i>H</i>-carbazol-9-yl)-<i>N</i><sup>1</sup>,<i>N</i><sup>3</sup>-di(<i>p</i>-tolyl)-<i>N</i><sup>1</sup>,<i>N</i><sup>3</sup>-bis(4-vinylphenyl)benzene-1,3-diamine (m-V-CzDPA) and <i>N</i><sup>1</sup>,<i>N</i><sup>1</sup>-diphenyl-<i>N</i><sup>3</sup>,<i>N</i><sup>5</sup>-di(<i>p</i>-tolyl)-<i>N</i><sup>3</sup>,<i>N</i><sup>5</sup>-bis(4-vinylphenyl) benzene-1,3,5-triamine (m-V-DPADPA) were designed and synthesized. Owing to their aromatic torsion structures, m-V-CzDPA and m-V-DPADPA possessed high <i>E</i><sub>T</sub>s of 2.89 and 2.87 eV, respectively, which can effectively confine triplet excitons in the emitting layer (EML). The carrier diffusion coefficients of their x-HTMs, x-m-CzDPA and x-m-DPADPA, which were obtained via carrier diffusion imaging characterization were 0.54 and 0.44 cm<sup>2</sup> s<sup>−1</sup>, respectively, thus indicating outstanding intrinsic hole transport capacity, with hole mobilities of 4.30×10<sup>−4</sup> and 1.39×10<sup>−4</sup> cm<sup>2</sup> V<sup>−1</sup> s<sup>−1</sup>, respectively. Solution-processed deep-blue TADF-OLEDs employing x-m-CzDPA as the HTM achieved a maximum current efficiency/maximum external quantum efficiency of 5.25 cd A<sup>−1</sup>/18.06%, with CIE coordinates of (0.162, 0.042). This is the first time that x-HTMs have served as efficient deep-blue TADF-OLEDs via a solution process, which also meets the latest BT. 2020 standard (CIE<sub><i>y</i></sub> ⩽ 0.046).</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":773,\"journal\":{\"name\":\"Science China Materials\",\"volume\":\"68 9\",\"pages\":\"3239 - 3249\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40843-025-3638-2\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-025-3638-2","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

交联空穴传输材料(x-HTMs)在解决溶液处理有机发光二极管(oled)的层间混合问题中起着至关重要的作用。然而,能级不匹配和低空穴迁移率等问题阻碍了x-HTMs在深蓝oled中的应用。特别是,热激活延迟荧光(TADF)发射器需要具有高三重态能量(ET)的HTMs来确保高激子利用效率。本文设计并合成了两种星形交联HTMs 5-(9h -咔唑-9-基)-N1, n3 -二(对苯基)-N1, n3 -二(4-乙烯基苯基)苯-1,3,5-三胺(m-V-DPADPA)和N1,N1-二苯基- n3, n5 -二(对苯基)- n3, n5 -二(4-乙烯基苯基)苯-1,3,5-三胺(m-V-DPADPA)。由于其芳香扭转结构,m-V-CzDPA和m-V-DPADPA分别具有2.89和2.87 eV的高ETs,可以有效地将三重态激子限制在发射层(EML)。通过载流子扩散成像表征得到的x-HTMs、x-m-CzDPA和x-m-DPADPA的载流子扩散系数分别为0.54和0.44 cm2 s−1,表明它们具有出色的内在空穴输运能力,空穴迁移率分别为4.30×10−4和1.39×10−4 cm2 V−1 s−1。采用x-m-CzDPA作为HTM的溶液处理的深蓝tadf - oled的最大电流效率/最大外量子效率为5.25 cd a−1/18.06%,CIE坐标为(0.162,0.042)。这是x-HTMs首次通过溶液工艺作为高效的深蓝tdf - oled,该工艺也符合最新的BT. 2020标准(CIEy≤0.046)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Star-shaped cross-linkable hole transport materials with high triplet energy and deep HOMO energy enable efficient solution-processed deep-blue TADF OLEDs

Cross-linkable hole transport materials (x-HTMs) play a crucial role in solving the issue of interlayer mixing of solution-processed organic light-emitting diodes (OLEDs). However, issues such as energy level mismatch and low hole mobility hinder the application of x-HTMs in deep-blue OLEDs. In particular, thermally activated delayed fluorescent (TADF) emitters require HTMs with high triplet energies (ET) to ensure high exciton utilization efficiency. Here, two star-shaped cross-linkable HTMs 5-(9H-carbazol-9-yl)-N1,N3-di(p-tolyl)-N1,N3-bis(4-vinylphenyl)benzene-1,3-diamine (m-V-CzDPA) and N1,N1-diphenyl-N3,N5-di(p-tolyl)-N3,N5-bis(4-vinylphenyl) benzene-1,3,5-triamine (m-V-DPADPA) were designed and synthesized. Owing to their aromatic torsion structures, m-V-CzDPA and m-V-DPADPA possessed high ETs of 2.89 and 2.87 eV, respectively, which can effectively confine triplet excitons in the emitting layer (EML). The carrier diffusion coefficients of their x-HTMs, x-m-CzDPA and x-m-DPADPA, which were obtained via carrier diffusion imaging characterization were 0.54 and 0.44 cm2 s−1, respectively, thus indicating outstanding intrinsic hole transport capacity, with hole mobilities of 4.30×10−4 and 1.39×10−4 cm2 V−1 s−1, respectively. Solution-processed deep-blue TADF-OLEDs employing x-m-CzDPA as the HTM achieved a maximum current efficiency/maximum external quantum efficiency of 5.25 cd A−1/18.06%, with CIE coordinates of (0.162, 0.042). This is the first time that x-HTMs have served as efficient deep-blue TADF-OLEDs via a solution process, which also meets the latest BT. 2020 standard (CIEy ⩽ 0.046).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信