石墨烯、氢氮化硼和过渡金属二硫族化合物的层工程和可控制备研究进展

IF 7.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Aiqing Fan  (, ), Qing Zhang  (, ), Yongshuai Wang  (, ), Lin Li  (, ), Fan Wu  (, ), Dechao Geng  (, )
{"title":"石墨烯、氢氮化硼和过渡金属二硫族化合物的层工程和可控制备研究进展","authors":"Aiqing Fan \n (,&nbsp;),&nbsp;Qing Zhang \n (,&nbsp;),&nbsp;Yongshuai Wang \n (,&nbsp;),&nbsp;Lin Li \n (,&nbsp;),&nbsp;Fan Wu \n (,&nbsp;),&nbsp;Dechao Geng \n (,&nbsp;)","doi":"10.1007/s40843-025-3656-9","DOIUrl":null,"url":null,"abstract":"<div><p>Multilayer two-dimensional (2D) materials offer expanded opportunities for tuning electronic, optical, and quantum properties compared to their monolayer forms. The number of layers, stacking configuration, and interlayer interactions are critical parameters that govern the physical behavior of these materials, enabling unique functionalities such as tunable bandgaps, interlayer excitons, sliding ferroelectricity, and unconventional superconductivity. This review highlights recent progress in the precise fabrication techniques of multilayer graphene, h-BN, and transition metal dichalcogenides. We compare artificial assembly techniques and direct growth strategies (chemical vapor deposition), emphasizing their advantages, limitations, and progress toward achieving uniform thickness, high crystallinity, and clean interfaces. The ability to engineer multilayer structures plays an essential role in improving device performance and realizing new quantum states of matter. By discussing fabrication strategies, growth mechanisms, and interlayer coupling effects, we highlight the significance of multilayer architecture in the development of functional 2D material systems.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 9","pages":"3143 - 3170"},"PeriodicalIF":7.4000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances in layer engineering and controllable fabrication of graphene, h-BN, and transition metal dichalcogenides\",\"authors\":\"Aiqing Fan \\n (,&nbsp;),&nbsp;Qing Zhang \\n (,&nbsp;),&nbsp;Yongshuai Wang \\n (,&nbsp;),&nbsp;Lin Li \\n (,&nbsp;),&nbsp;Fan Wu \\n (,&nbsp;),&nbsp;Dechao Geng \\n (,&nbsp;)\",\"doi\":\"10.1007/s40843-025-3656-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Multilayer two-dimensional (2D) materials offer expanded opportunities for tuning electronic, optical, and quantum properties compared to their monolayer forms. The number of layers, stacking configuration, and interlayer interactions are critical parameters that govern the physical behavior of these materials, enabling unique functionalities such as tunable bandgaps, interlayer excitons, sliding ferroelectricity, and unconventional superconductivity. This review highlights recent progress in the precise fabrication techniques of multilayer graphene, h-BN, and transition metal dichalcogenides. We compare artificial assembly techniques and direct growth strategies (chemical vapor deposition), emphasizing their advantages, limitations, and progress toward achieving uniform thickness, high crystallinity, and clean interfaces. The ability to engineer multilayer structures plays an essential role in improving device performance and realizing new quantum states of matter. By discussing fabrication strategies, growth mechanisms, and interlayer coupling effects, we highlight the significance of multilayer architecture in the development of functional 2D material systems.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":773,\"journal\":{\"name\":\"Science China Materials\",\"volume\":\"68 9\",\"pages\":\"3143 - 3170\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40843-025-3656-9\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-025-3656-9","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

与单层材料相比,多层二维(2D)材料为调整电子、光学和量子特性提供了更多的机会。层数、堆叠结构和层间相互作用是控制这些材料物理行为的关键参数,从而实现可调带隙、层间激子、滑动铁电性和非常规超导性等独特功能。本文综述了近年来在多层石墨烯、氢氮化硼和过渡金属二硫族化合物的精密制备技术方面取得的进展。我们比较了人工组装技术和直接生长策略(化学气相沉积),强调了它们的优点、局限性以及在实现均匀厚度、高结晶度和清洁界面方面的进展。设计多层结构的能力在提高器件性能和实现新的物质量子态方面起着至关重要的作用。通过讨论制备策略、生长机制和层间耦合效应,我们强调了多层结构在功能二维材料系统发展中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent advances in layer engineering and controllable fabrication of graphene, h-BN, and transition metal dichalcogenides

Multilayer two-dimensional (2D) materials offer expanded opportunities for tuning electronic, optical, and quantum properties compared to their monolayer forms. The number of layers, stacking configuration, and interlayer interactions are critical parameters that govern the physical behavior of these materials, enabling unique functionalities such as tunable bandgaps, interlayer excitons, sliding ferroelectricity, and unconventional superconductivity. This review highlights recent progress in the precise fabrication techniques of multilayer graphene, h-BN, and transition metal dichalcogenides. We compare artificial assembly techniques and direct growth strategies (chemical vapor deposition), emphasizing their advantages, limitations, and progress toward achieving uniform thickness, high crystallinity, and clean interfaces. The ability to engineer multilayer structures plays an essential role in improving device performance and realizing new quantum states of matter. By discussing fabrication strategies, growth mechanisms, and interlayer coupling effects, we highlight the significance of multilayer architecture in the development of functional 2D material systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信