n掺杂ZnO薄膜的电化学沉积及其灭活微生物的优异潜力

IF 3.4 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
M. K. Silva, C. M. V. P. Ramos, A. E. B. Lima, R. M. P. Silva, G. S. de Figueiredo, R. A. Antunes, W. Alves, G. E. Luz. Jr, R. S. Santos
{"title":"n掺杂ZnO薄膜的电化学沉积及其灭活微生物的优异潜力","authors":"M. K. Silva,&nbsp;C. M. V. P. Ramos,&nbsp;A. E. B. Lima,&nbsp;R. M. P. Silva,&nbsp;G. S. de Figueiredo,&nbsp;R. A. Antunes,&nbsp;W. Alves,&nbsp;G. E. Luz. Jr,&nbsp;R. S. Santos","doi":"10.1007/s13762-025-06555-6","DOIUrl":null,"url":null,"abstract":"<div><p>Nitrogen-doped ZnO (ZnO:N) is a semiconductor with enhanced photocatalytic properties, which makes it a promising material for antimicrobial applications. In this study, the photoelectrocatalytic inactivation of <i>Staphylococcus aureus</i>, <i>Escherichia coli</i> and <i>Candida albican</i> on ZnO:N films was investigated. The films were prepared by electrochemical deposition with different doping concentrations (20, 40, 60 cm<sup>3</sup> min<sup>−1</sup>). X-ray diffraction patterns showed that pure ZnO and ZnO:N films displayed a crystalline wurtzite structure. Scanning electron micrograph revealed a hexagonal nanorod morphology for samples. The substitutional doping that occurred in ZnO favored the formation of oxygen vacancies, as shown by X-ray photoelectron spectroscopy measurements. The nitrogen doping caused a decrease in the values of the band gap energy (E<sub>bg</sub>) from 3.17 to 3.12 eV. Photoelectrochemical studies showed higher photocurrent density for ZnO:N compared to ZnO films, reaching 60 µA cm<sup>−2</sup> at 0.70 V (vs. Ag/AgCl). The chronopotentiometry curves showed that all films present n-type semiconductor behavior and flat band potentials suitable for generating reactive oxygen species capable of inactivating microorganisms. Under irradiation, all ZnO:N films inhibited <i>S. aureus</i>. Also, ZnO:N-40 film showed complete inhibitory effects on <i>E. coli</i> and <i>C. albicans.</i> These results highlight the potential of nitrogen-doped ZnO films for antimicrobial applications.</p></div>","PeriodicalId":589,"journal":{"name":"International Journal of Environmental Science and Technology","volume":"22 14","pages":"13983 - 13998"},"PeriodicalIF":3.4000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical deposition of N-doped ZnO film and its superior potential to inactivate microorganisms\",\"authors\":\"M. K. Silva,&nbsp;C. M. V. P. Ramos,&nbsp;A. E. B. Lima,&nbsp;R. M. P. Silva,&nbsp;G. S. de Figueiredo,&nbsp;R. A. Antunes,&nbsp;W. Alves,&nbsp;G. E. Luz. Jr,&nbsp;R. S. Santos\",\"doi\":\"10.1007/s13762-025-06555-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nitrogen-doped ZnO (ZnO:N) is a semiconductor with enhanced photocatalytic properties, which makes it a promising material for antimicrobial applications. In this study, the photoelectrocatalytic inactivation of <i>Staphylococcus aureus</i>, <i>Escherichia coli</i> and <i>Candida albican</i> on ZnO:N films was investigated. The films were prepared by electrochemical deposition with different doping concentrations (20, 40, 60 cm<sup>3</sup> min<sup>−1</sup>). X-ray diffraction patterns showed that pure ZnO and ZnO:N films displayed a crystalline wurtzite structure. Scanning electron micrograph revealed a hexagonal nanorod morphology for samples. The substitutional doping that occurred in ZnO favored the formation of oxygen vacancies, as shown by X-ray photoelectron spectroscopy measurements. The nitrogen doping caused a decrease in the values of the band gap energy (E<sub>bg</sub>) from 3.17 to 3.12 eV. Photoelectrochemical studies showed higher photocurrent density for ZnO:N compared to ZnO films, reaching 60 µA cm<sup>−2</sup> at 0.70 V (vs. Ag/AgCl). The chronopotentiometry curves showed that all films present n-type semiconductor behavior and flat band potentials suitable for generating reactive oxygen species capable of inactivating microorganisms. Under irradiation, all ZnO:N films inhibited <i>S. aureus</i>. Also, ZnO:N-40 film showed complete inhibitory effects on <i>E. coli</i> and <i>C. albicans.</i> These results highlight the potential of nitrogen-doped ZnO films for antimicrobial applications.</p></div>\",\"PeriodicalId\":589,\"journal\":{\"name\":\"International Journal of Environmental Science and Technology\",\"volume\":\"22 14\",\"pages\":\"13983 - 13998\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Environmental Science and Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13762-025-06555-6\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Environmental Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s13762-025-06555-6","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

氮掺杂ZnO (ZnO:N)是一种具有增强光催化性能的半导体材料,是一种很有前景的抗菌材料。本研究研究了金黄色葡萄球菌、大肠杆菌和白色念珠菌在ZnO:N薄膜上的光电催化失活。采用不同掺杂浓度(20、40、60 cm3 min−1)的电化学沉积方法制备薄膜。x射线衍射图显示,纯ZnO和ZnO:N薄膜呈结晶纤锌矿结构。扫描电镜显示样品呈六边形纳米棒形态。x射线光电子能谱测量表明,ZnO中发生的取代掺杂有利于氧空位的形成。氮掺杂使带隙能(Ebg)从3.17 eV降低到3.12 eV。光电化学研究表明,与ZnO薄膜相比,ZnO:N的光电流密度更高,在0.70 V时达到60µA cm−2(相对于Ag/AgCl)。时间电位曲线显示,所有薄膜都具有n型半导体行为和平带电位,适合产生能够灭活微生物的活性氧。在辐照下,所有ZnO:N薄膜均对金黄色葡萄球菌有抑制作用。ZnO:N-40薄膜对大肠杆菌和白色念珠菌有完全的抑制作用。这些结果突出了氮掺杂ZnO薄膜在抗菌应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrochemical deposition of N-doped ZnO film and its superior potential to inactivate microorganisms

Nitrogen-doped ZnO (ZnO:N) is a semiconductor with enhanced photocatalytic properties, which makes it a promising material for antimicrobial applications. In this study, the photoelectrocatalytic inactivation of Staphylococcus aureus, Escherichia coli and Candida albican on ZnO:N films was investigated. The films were prepared by electrochemical deposition with different doping concentrations (20, 40, 60 cm3 min−1). X-ray diffraction patterns showed that pure ZnO and ZnO:N films displayed a crystalline wurtzite structure. Scanning electron micrograph revealed a hexagonal nanorod morphology for samples. The substitutional doping that occurred in ZnO favored the formation of oxygen vacancies, as shown by X-ray photoelectron spectroscopy measurements. The nitrogen doping caused a decrease in the values of the band gap energy (Ebg) from 3.17 to 3.12 eV. Photoelectrochemical studies showed higher photocurrent density for ZnO:N compared to ZnO films, reaching 60 µA cm−2 at 0.70 V (vs. Ag/AgCl). The chronopotentiometry curves showed that all films present n-type semiconductor behavior and flat band potentials suitable for generating reactive oxygen species capable of inactivating microorganisms. Under irradiation, all ZnO:N films inhibited S. aureus. Also, ZnO:N-40 film showed complete inhibitory effects on E. coli and C. albicans. These results highlight the potential of nitrogen-doped ZnO films for antimicrobial applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
6.50%
发文量
806
审稿时长
10.8 months
期刊介绍: International Journal of Environmental Science and Technology (IJEST) is an international scholarly refereed research journal which aims to promote the theory and practice of environmental science and technology, innovation, engineering and management. A broad outline of the journal''s scope includes: peer reviewed original research articles, case and technical reports, reviews and analyses papers, short communications and notes to the editor, in interdisciplinary information on the practice and status of research in environmental science and technology, both natural and man made. The main aspects of research areas include, but are not exclusive to; environmental chemistry and biology, environments pollution control and abatement technology, transport and fate of pollutants in the environment, concentrations and dispersion of wastes in air, water, and soil, point and non-point sources pollution, heavy metals and organic compounds in the environment, atmospheric pollutants and trace gases, solid and hazardous waste management; soil biodegradation and bioremediation of contaminated sites; environmental impact assessment, industrial ecology, ecological and human risk assessment; improved energy management and auditing efficiency and environmental standards and criteria.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信