调节轨道杂化诱导不对称催化以实现有效的可逆钠转化储存

IF 7.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zijia Qi  (, ), Kai Cui  (, ), Simi Sui  (, ), Yuxuan Wang  (, ), Haonan Xie  (, ), Guangxuan Wu  (, ), Yihao Cheng  (, ), Enzuo Liu  (, ), Fang He  (, ), Chunnian He  (, ), Tianshuai Wang  (, ), Biao Chen  (, ), Naiqin Zhao  (, )
{"title":"调节轨道杂化诱导不对称催化以实现有效的可逆钠转化储存","authors":"Zijia Qi \n (,&nbsp;),&nbsp;Kai Cui \n (,&nbsp;),&nbsp;Simi Sui \n (,&nbsp;),&nbsp;Yuxuan Wang \n (,&nbsp;),&nbsp;Haonan Xie \n (,&nbsp;),&nbsp;Guangxuan Wu \n (,&nbsp;),&nbsp;Yihao Cheng \n (,&nbsp;),&nbsp;Enzuo Liu \n (,&nbsp;),&nbsp;Fang He \n (,&nbsp;),&nbsp;Chunnian He \n (,&nbsp;),&nbsp;Tianshuai Wang \n (,&nbsp;),&nbsp;Biao Chen \n (,&nbsp;),&nbsp;Naiqin Zhao \n (,&nbsp;)","doi":"10.1007/s40843-025-3397-0","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon-supported single-atom catalysts (C-SACs) have been demonstrated as a strategy to promote the reversible conversion reaction of metal sulfide anodes in sodium-ion batteries (SIBs). However, the design principle of promising C-SACs remains lacking for obtaining highly reversible metal sulfide anodes. We designed a phosphorus-doped carbon-supported single-atom Mn catalyst (PC-SAMn) with an asymmetrical dual active center. The sulfiphilic Mn and sodiophilic P active centers adsorb discharged Na<sub>2</sub>S through Mn–S d-p and P–Na s-p orbital hybridizations. The asymmetrical dual active center induced the asymmetrical adsorption configuration of Na<sub>2</sub>S, which efficiently weakened Na–S bond strength and facilitated the decomposition of Na<sub>2</sub>S during charging. As a result, the designed catalyst enables typical MoS<sub>2</sub> with a record-high compositional reversible degree of 89.61% and a low capacity decay ratio of only 0.18% per 100 cycles during 2000 cycles. The research establishes the “orbital hybridization-molecular structure-catalytic activity” relationship for guiding the design of highly reversible conversion-type materials.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 9","pages":"3277 - 3287"},"PeriodicalIF":7.4000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulating the orbital hybridization to induce asymmetrical catalysis for efficient reversible sodium conversion storage\",\"authors\":\"Zijia Qi \\n (,&nbsp;),&nbsp;Kai Cui \\n (,&nbsp;),&nbsp;Simi Sui \\n (,&nbsp;),&nbsp;Yuxuan Wang \\n (,&nbsp;),&nbsp;Haonan Xie \\n (,&nbsp;),&nbsp;Guangxuan Wu \\n (,&nbsp;),&nbsp;Yihao Cheng \\n (,&nbsp;),&nbsp;Enzuo Liu \\n (,&nbsp;),&nbsp;Fang He \\n (,&nbsp;),&nbsp;Chunnian He \\n (,&nbsp;),&nbsp;Tianshuai Wang \\n (,&nbsp;),&nbsp;Biao Chen \\n (,&nbsp;),&nbsp;Naiqin Zhao \\n (,&nbsp;)\",\"doi\":\"10.1007/s40843-025-3397-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Carbon-supported single-atom catalysts (C-SACs) have been demonstrated as a strategy to promote the reversible conversion reaction of metal sulfide anodes in sodium-ion batteries (SIBs). However, the design principle of promising C-SACs remains lacking for obtaining highly reversible metal sulfide anodes. We designed a phosphorus-doped carbon-supported single-atom Mn catalyst (PC-SAMn) with an asymmetrical dual active center. The sulfiphilic Mn and sodiophilic P active centers adsorb discharged Na<sub>2</sub>S through Mn–S d-p and P–Na s-p orbital hybridizations. The asymmetrical dual active center induced the asymmetrical adsorption configuration of Na<sub>2</sub>S, which efficiently weakened Na–S bond strength and facilitated the decomposition of Na<sub>2</sub>S during charging. As a result, the designed catalyst enables typical MoS<sub>2</sub> with a record-high compositional reversible degree of 89.61% and a low capacity decay ratio of only 0.18% per 100 cycles during 2000 cycles. The research establishes the “orbital hybridization-molecular structure-catalytic activity” relationship for guiding the design of highly reversible conversion-type materials.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":773,\"journal\":{\"name\":\"Science China Materials\",\"volume\":\"68 9\",\"pages\":\"3277 - 3287\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40843-025-3397-0\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-025-3397-0","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

碳负载单原子催化剂(C-SACs)已被证明是促进钠离子电池(sib)中金属硫化物阳极可逆转化反应的一种策略。然而,在获得高可逆金属硫化物阳极方面,仍缺乏有前途的c - sac设计原则。设计了一种具有不对称双活性中心的磷掺杂碳负载单原子Mn催化剂(PC-SAMn)。亲硫的Mn和亲钠的P活性中心通过Mn - s- d-p和P - na - s-p轨道杂化吸附排出的Na2S。不对称的双活性中心诱导了Na2S的不对称吸附构型,有效地削弱了Na-S键的强度,有利于Na2S在充电过程中的分解。结果表明,在2000次循环中,典型的二硫化钼的组分可逆性达到了创纪录的89.61%,每100次循环的容量衰减率仅为0.18%。该研究建立了“轨道杂化-分子结构-催化活性”关系,为高可逆转化型材料的设计提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regulating the orbital hybridization to induce asymmetrical catalysis for efficient reversible sodium conversion storage

Carbon-supported single-atom catalysts (C-SACs) have been demonstrated as a strategy to promote the reversible conversion reaction of metal sulfide anodes in sodium-ion batteries (SIBs). However, the design principle of promising C-SACs remains lacking for obtaining highly reversible metal sulfide anodes. We designed a phosphorus-doped carbon-supported single-atom Mn catalyst (PC-SAMn) with an asymmetrical dual active center. The sulfiphilic Mn and sodiophilic P active centers adsorb discharged Na2S through Mn–S d-p and P–Na s-p orbital hybridizations. The asymmetrical dual active center induced the asymmetrical adsorption configuration of Na2S, which efficiently weakened Na–S bond strength and facilitated the decomposition of Na2S during charging. As a result, the designed catalyst enables typical MoS2 with a record-high compositional reversible degree of 89.61% and a low capacity decay ratio of only 0.18% per 100 cycles during 2000 cycles. The research establishes the “orbital hybridization-molecular structure-catalytic activity” relationship for guiding the design of highly reversible conversion-type materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Materials
Science China Materials Materials Science-General Materials Science
CiteScore
11.40
自引率
7.40%
发文量
949
期刊介绍: Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信